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W
e begin this chapter with a brief survey of early chemical discov-
eries, culminating in Dalton s atomic theory. This is followed by a
description of the physical evidence leading to the modern pic-

ture of the nuclear atom, in which protons and neutrons are combined into
a nucleus with electrons in space surrounding the nucleus. We will also
introduce the periodic table as the primary means of organizing elements
into groups with similar properties. Finally, we will introduce the concept

Image of silicon atoms that are only 78 pm apart; image produced by using a
scanning transmission electron microscope (STEM). The hypothesis that all matter is
made up of atoms has existed for more than 2000 years. It is only within the last few
decades, however, that techniques have been developed that can render individual
atoms visible.
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2-1 Early Chemical Discoveries and the Atomic Theory 35

 FIGURE 2-1
Two combustion reactions
The apparent product of the
combustion of the match
the ash weighs less than the
match. The product of the
combustion of the magnesium
ribbon (the smoke ) weighs
more than the ribbon. Actually,
in each case, the total mass
remains unchanged. To
understand this, you have to
know that oxygen gas enters
into both combustions and
that water and carbon dioxide
are also products of the
combustion of the match.

of the mole and the Avogadro constant, which are the principal tools for count-
ing atoms and molecules and measuring amounts of substances. We will use
these tools throughout the text.

2-1 Early Chemical Discoveries 
and the Atomic Theory

Chemistry has been practiced for a very long time, even if its practitioners
were much more interested in its applications than in its underlying princi-
ples. The blast furnace for extracting iron from iron ore appeared as early as
A.D. 1300, and such important chemicals as sulfuric acid (oil of vitriol), nitric
acid (aqua fortis), and sodium sulfate (Glauber s salt) were all well known
and used several hundred years ago. Before the end of the eighteenth century,
the principal gases of the atmosphere nitrogen and oxygen had been iso-
lated, and natural laws had been proposed describing the physical behavior of
gases. Yet chemistry cannot be said to have entered the modern age until the
process of combustion was explained. In this section, we explore the direct
link between the explanation of combustion and Dalton s atomic theory.

Law of Conservation of Mass
The process of combustion burning is so familiar that it is hard to realize
what a difficult riddle it posed for early scientists. Some of the difficult-to-
explain observations are described in Figure 2-1.

In 1774, Antoine Lavoisier (1743 1794) performed an experiment in which
he heated a sealed glass vessel containing a sample of tin and some air. He
found that the mass before heating and after heating

were the same. Through further
experiments, he showed that the product of the reaction, tin calx (tin oxide),
consisted of the original tin together with a portion of the air. Experiments like
this proved to Lavoisier that oxygen from air is essential to combustion, and
also led him to formulate the law of conservation of mass:

(glass vessel + tin calx + remaining air)
(glass vessel + tin + air) 

The total mass of substances present after a chemical reaction is the same
as the total mass of substances before the reaction.

This law is illustrated in Figure 2-2, where the reaction between silver nitrate
and potassium chromate to give a red solid (silver chromate) is monitored by
placing the reactants on a single-pan balance the total mass does not change.
Stated another way, the law of conservation of mass says that matter is neither
created nor destroyed in a chemical reaction.

(a) (b)

104.50 g 104.50 g

FIGURE 2-2
Mass is conserved during a chemical reaction
(a) Before the reaction, a beaker with a silver nitrate solution
and a graduated cylinder with a potassium chromate solution
are placed on a single-pan balance, which displays their
combined mass 104.50 g. (b) When the solutions are mixed,
a chemical reaction occurs that forms silver chromate (red
precipitate) in a potassium nitrate solution. Note that the total
mass 104.50 g remains unchanged.
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36 Chapter 2 Atoms and the Atomic Theory

 The mineral malachite 
(a) and the green patina on a
copper roof (b) are both basic
copper carbonate, just like 
the basic copper carbonate
prepared by Proust in 1799.

2-1 CONCEPT ASSESSMENT 

Jan Baptista van Helmont (1579 1644) weighed a young willow tree and the
soil in which the tree was planted. Five years later he found that the mass of soil
had decreased by only 0.057 kg, while that of the tree had increased by 75 kg.
During that period he had added only water to the bucket in which the tree was
planted. Helmont concluded that essentially all the mass gained by the tree had
come from the water. Was this a valid conclusion? Explain.

Law of Constant Composition
In 1799, Joseph Proust (1754 1826) reported, One hundred pounds of copper,
dissolved in sulfuric or nitric acids and precipitated by the carbonates of soda
or potash, invariably gives 180 pounds of green carbonate. * This and similar
observations became the basis of the law of constant composition, or the law
of definite proportions:

All samples of a compound have the same composition the same
proportions by mass of the constituent elements.

To see how the law of constant composition works, consider the compound
water. Water is made up of two atoms of hydrogen (H) for every atom of oxygen (O),
a fact that can be represented symbolically by a chemical formula, the familiar H2O.

*The substance Proust produced is actually a more complex substance called basic copper car-
bonate. Proust s results were valid because, like all compounds, basic copper carbonate has a
constant composition.

First, determine the total mass
before the reaction.

The total mass after the reaction
is the same as before the reaction.

Solve for the mass of magnesium
oxide.

 = 0.755 g magnesium oxide after reaction
 - 2.015 g oxygen after reaction

 ? g magnesium oxide after reaction = 2.770 g mass after reaction

 + 2.015 g oxygen after reaction
 2.770 g mass after reaction = ? g magnesium oxide after reaction

 = 2.770 g mass before reaction
 mass before reaction = 0.455 g magnesium + 2.315 g oxygen

Assess
Here is another approach. The mass of oxygen that reacted is 2.315 g 2.015 g 0.300 g. Thus, 0.300 g oxygen
combined with 0.455 g magnesium to give 0.300 g 0.455 g 0.755 g magnesium oxide.

PRACTICE EXAMPLE A: A 0.382 g sample of magnesium is allowed to react with 2.652 g of nitrogen gas. The sole
product is magnesium nitride. After the reaction, the mass of unreacted nitrogen is 2.505 g. What mass of
magnesium nitride is produced?

PRACTICE EXAMPLE B: A 7.12 g sample of magnesium is heated with 1.80 g of bromine. All the bromine is used
up, and 2.07 g of magnesium bromide is the only product. What mass of magnesium remains unreacted?

=+

=-

EXAMPLE 2-1 Applying the Law of Conservation of Mass

A 0.455 g sample of magnesium is allowed to burn in 2.315 g of oxygen gas. The sole product is magnesium
oxide. After the reaction, no magnesium remains and the mass of unreacted oxygen is 2.015 g. What mass of
magnesium oxide is produced?

Analyze
The total mass is unchanged. The total mass is the sum of the masses of the substances present initially. The
mass of magnesium oxide is the total mass minus the mass of unreacted oxygen.

Solve

(a)

(b)
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2-1 Early Chemical Discoveries and the Atomic Theory 37

Sample A and Its Composition Sample B and Its Composition

10.000 g 27.000 g
1.119 g H % H = 11.19 3.021 g H % H = 11.19
8.881 g O % O = 88.81 23.979 g O % O = 88.81

The two samples described below have the same proportions of the two elements,
expressed as percentages by mass. To determine the percent by mass of hydrogen,
for example, simply divide the mass of hydrogen by the sample mass and multi-
ply by 100%. For each sample, you will obtain the same result: 11.19% H.

EXAMPLE 2-2 Using the Law of Constant Composition

In Example 2-1 we found that when 0.455 g of magnesium reacted with 2.315 g of oxygen, 0.755 g of magnesium
oxide was obtained. Determine the mass of magnesium contained in a 0.500 g sample of magnesium oxide.

Analyze
We know that 0.755 g of magnesium oxide contains 0.455 g of magnesium. According to the law of constant
composition, the mass ratio 0.455 g magnesium/0.755 g magnesium oxide should exist in all samples of
magnesium oxide.

Solve
Application of the law of constant composition gives

Solving the expression above, we obtain

Assess
You can also work this problem by using mass percentages. If 0.755 g of magnesium oxide contains 0.455 g 
of magnesium, then magnesium oxide is 0.455 g/0.755 g 100% 60.3% magnesium by mass and 
100% 60.3% 39.7% oxygen by mass. Thus, a 0.500 g sample of magnesium oxide must contain 

0.500 g 60.3% 0.301 g of magnesium and 0.500 g 39.7% 0.199 g of oxygen.

PRACTICE EXAMPLE A: What masses of magnesium and oxygen must be combined to make exactly 2.000 g of
magnesium oxide?

PRACTICE EXAMPLE B: What substances are present, and what are their masses, after the reaction of 10.00 g of
magnesium and 10.00 g of oxygen?

=*=*

=2-1

=*21

= 0.301 g magnesium

? g magnesium = 0.500 g magnesium oxide *  
0.455 g magnesium

0.755 g magnesium oxide

 

 
0.455 g magnesium

0.755 g magnesium oxide
=

? g magnesium

0.500 g magnesium oxide

2-2 CONCEPT ASSESSMENT 

When 4.15 g magnesium and 82.6 g bromine react, (1) all the magnesium is
used up, (2) some bromine remains unreacted, and (3) magnesium bromide is
the only product. With this information alone, is it possible to deduce the mass
of magnesium bromide produced? Explain.

Dalton s Atomic Theory
From 1803 to 1808, John Dalton, an English schoolteacher, used the two funda-
mental laws of chemical combination just described as the basis of an atomic
theory. His theory involved three assumptions:

1. Each chemical element is composed of minute, indivisible particles called
atoms. Atoms can be neither created nor destroyed during a chemical change.
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38 Chapter 2 Atoms and the Atomic Theory

 John Dalton (1766 1844),
developer of the atomic
theory. Dalton has not been
considered a particularly
good experimenter, perhaps
because of his color blindness
(a condition sometimes called
daltonism). However, he did
skillfully use the data of
others in formulating his
atomic theory. (The Granger
Collection)

2. All atoms of an element are alike in mass (weight) and other properties,
but the atoms of one element are different from those of all other elements.

3. In each of their compounds, different elements combine in a simple
numerical ratio, for example, one atom of A to one of B (AB), or one atom
of A to two of 

If atoms of an element are indestructible (assumption 1), then the same atoms
must be present after a chemical reaction as before. The total mass remains
unchanged. Dalton s theory explains the law of conservation of mass. If all
atoms of an element are alike in mass (assumption 2) and if atoms unite in fixed
numerical ratios (assumption 3), the percent composition of a compound must
have a unique value, regardless of the origin of the sample analyzed. Dalton s
theory also explains the law of constant composition.

Like all good theories, Dalton s atomic theory led to a prediction the law
of multiple proportions.

B (AB2).

If two elements form more than a single compound, the masses of one
element combined with a fixed mass of the second are in the ratio of
small whole numbers.

KEEP IN MIND

that all we know is that the
second oxide is twice as rich
in oxygen as the first. If the
first is CO, the possibilities
for the second are 

and so on. (See also
Exercise 18.)
C3O6,

CO2, C2O4,

To illustrate, consider two oxides of carbon (an oxide is a combination of an
element with oxygen). In one oxide, 1.000 g of carbon is combined with 1.333 g
of oxygen, and in the other, with 2.667 g of oxygen. We see that the second
oxide is richer in oxygen; in fact, it contains twice as much oxygen as the first,

We now know that the first oxide corresponds to the
formula CO and the second, (Fig. 2-3).

The characteristic relative masses of the atoms of the various elements
became known as atomic weights, and throughout the nineteenth century,
chemists worked at establishing reliable values of relative atomic weights.
Mostly, however, chemists directed their attention to discovering new ele-
ments, synthesizing new compounds, developing techniques for analyzing
materials, and in general, building up a vast body of chemical knowledge.
Efforts to unravel the structure of the atom became the focus of physicists, as
we see in the next several sections.

2-2 Electrons and Other Discoveries 
in Atomic Physics

Fortunately, we can acquire a qualitative understanding of atomic structure
without having to retrace all the discoveries that preceded atomic physics.
We do, however, need a few key ideas about the interrelated phenomena of
electricity and magnetism, which we briefly discuss here. Electricity and
magnetism were used in the experiments that led to the current theory of
atomic structure.

Certain objects display a property called electric charge, which can be either
positive or negative Positive and negative charges attract each other,
while two positive or two negative charges repel each other. As we learn in
this section, all objects of matter are made up of charged particles. An object
having equal numbers of positively and negatively charged particles carries
no net charge and is electrically neutral. If the number of positive charges
exceeds the number of negative charges, the object has a net positive charge. If
negative charges exceed positive charges, the object has a net negative charge.
Sometimes when one substance is rubbed against another, as in combing hair,
net electric charges build up on the objects, implying that rubbing separates

1-2.1+2

CO2

2.667 g>1.333 g = 2.00.

 FIGURE 2-3
Molecules CO and 
illustrating the law of
multiple proportions
The mass of carbon is the
same in the two molecules,
but the mass of oxygen in

is twice the mass of
oxygen in CO. Thus, in
accordance with the law of
multiple proportions, the
masses of oxygen in the two
compounds, relative to a fixed
mass of carbon, are in a ratio
of small whole numbers, 2:1.

CO2

CO2
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2-2 Electrons and Other Discoveries in Atomic Physics 39

some positive and negative charges (Fig. 2-4). Moreover, when a stationary
(static) positive charge builds up in one place, a negative charge of equal size
appears somewhere else; charge is balanced.

Figure 2-5 shows how charged particles behave when they move through
the field of a magnet. They are deflected from their straight-line path into a
curved path in a plane perpendicular to the field. Think of the field or region
of influence of the magnet as represented by a series of invisible lines of
force  running from the north pole to the south pole of the magnet.

The Discovery of Electrons
CRT, the abbreviation for cathode-ray tube, was once a familiar acronym.
Before liquid crystal display (LCD) was available, the CRT was the heart of
computer monitors and TV sets. The first cathode-ray tube was made by
Michael Faraday (1791 1867) about 150 years ago. When he passed electric-
ity through glass tubes from which most of the air had been evacuated,
Faraday discovered cathode rays, a type of radiation emitted by the negative
terminal, or cathode. The radiation crossed the evacuated tube to the positive
terminal, or anode. Later scientists found that cathode rays travel in straight
lines and have properties that are independent of the cathode material (that
is, whether it is iron, platinum, and so on). The construction of a CRT is
shown in Figure 2-6. The cathode rays produced in the CRT are invisible,
and they can be detected only by the light emitted by materials that they
strike. These materials, called phosphors, are painted on the end of the CRT so
that the path of the cathode rays can be revealed. (Fluorescence is the term
used to describe the emission of light by a phosphor when it is struck by

We will use electrostatics
(charge attractions and 
repulsions) to explain and
understand many chemical
properties.

 FIGURE 2-4
Forces between electrically charged objects
(a) Electrostatically charged comb. If you comb your hair on a dry day, a static charge
develops on the comb and causes bits of paper to be attracted to the comb. (b) Both
objects on the left carry a negative electric charge. Objects with like charge repel each
other. The objects in the center lack any electric charge and exert no forces on each
other. The objects on the right carry opposite charges one positive and one
negative and attract each other.

(a) (b)

*++ +

 FIGURE 2-5
Effect of a magnetic field
on charged particles
When charged particles
travel through a magnetic
field so that their path is
perpendicular to the field,
they are deflected by the
field. Negatively charged
particles are deflected in
one direction, and positively
charged particles in the
opposite direction. Several
phenomena described in this
section depend on this
behavior.

*

+ N S

FIGURE 2-6
A cathode-ray tube
The high-voltage source of electricity creates a negative
charge on the electrode at the left (cathode) and a positive
charge on the electrode at the right (anode). Cathode 
rays pass from the cathode (C) to the anode (A), which is
perforated to allow the passage of a narrow beam of
cathode rays. The rays are visible only through the green
fluorescence that they produce on the zinc sulfide coated
screen at the end of the tube. They are invisible in other
parts of the tube.

Evacuated tube

*

Invisible cathode ray

Hole

Anode (A)

Phosphor (zinc sulfide-

coated) screen detects

position of cathode

ray

Cathode (C)

High voltage

source

+
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40 Chapter 2 Atoms and the Atomic Theory

energetic radiation.) Another significant observation about cathode rays is
that they are deflected by electric and magnetic fields in the manner
expected for negatively charged particles (Fig. 2-7a, b).

In 1897, by the method outlined in Figure 2-7(c), J. J. Thomson (1856 1940)
established the ratio of mass (m) to electric charge (e) for cathode rays, that is, 
Also, Thomson concluded that cathode rays are negatively charged fundamental
particles of matter found in all atoms. (The properties of cathode rays are
independent of the composition of the cathode.) Cathode rays subsequently
became known as electrons, a term first proposed by George Stoney in 1874.

Robert Millikan (1868 1953) determined the electronic charge e through a
series of oil-drop experiments (1906 1914), described in Figure 2-8. The cur-
rently accepted value of the electronic charge e, expressed in coulombs to
five significant figures, is By combining this value with
an accurate value of the mass-to-charge ratio for an electron, we find that the
mass of an electron is 

Once the electron was seen to be a fundamental particle of matter found in
all atoms, atomic physicists began to speculate on how these particles were
incorporated into atoms. The commonly accepted model was that proposed by
J. J. Thomson. Thomson thought that the positive charge necessary to counter-
balance the negative charges of electrons in a neutral atom was in the form of

9.1094 * 10-28 g.

-1.6022 * 10-19 C.

m>e.

 FIGURE 2-7
Cathode rays and their properties
(a) Deflection of cathode rays in an electric field. The beam of cathode rays is deflected
as it travels from left to right in the field of the electrically charged condenser plates (E).
The deflection corresponds to that expected of negatively charged particles. 
(b) Deflection of cathode rays in a magnetic field. The beam of cathode rays is
deflected as it travels from left to right in the field of the magnet (M). The deflection
corresponds to that expected of negatively charged particles. (c) Determining the
mass-to-charge ratio, for cathode rays. The cathode-ray beam strikes the end
screen undeflected if the forces exerted on it by the electric and magnetic fields 
are counterbalanced. By knowing the strengths of the electric and magnetic fields,
together with other data, a value of can be obtained. Precise measurements yield
a value of per coulomb. (Because cathode rays carry a negative
charge, the sign of the mass-to-charge ratio is also negative.)

-5.6857 * 10-9 g
m>e

m>e,

*
Condenser plates (E)

Magnet (M)

(a)

+

(b)

(c)

N
S

N S

*

+

The coulomb (C) is the 
SI unit of electric charge 
(see also Appendix B).
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2-2 Electrons and Other Discoveries in Atomic Physics 41

a nebulous cloud. Electrons, he suggested, floated in a diffuse cloud of posi-
tive charge (rather like a lump of gelatin with electron fruit  embedded in it).
This model became known as the plum-pudding model because of its similar-
ity to a popular English dessert. The plum-pudding model is illustrated in
Figure 2-9 for a neutral atom and for atomic species, called ions, which carry a
net charge.

X-Rays and Radioactivity

Cathode-ray research had many important spin-offs. In particular, two natural
phenomena of immense theoretical and practical significance were discovered
in the course of other investigations.

In 1895, Wilhelm Roentgen (1845 1923) noticed that when cathode-ray
tubes were operating, certain materials outside the tubes glowed or fluoresced.
He showed that this fluorescence was caused by radiation emitted by the
cathode-ray tubes. Because of the unknown nature of this radiation, Roentgen
coined the term X-ray. We now recognize the X-ray as a form of high-energy
electromagnetic radiation, which is discussed in Chapter 8.

Antoine Henri Becquerel (1852 1908) associated X-rays with fluorescence
and wondered if naturally fluorescent materials produce X-rays. To test this
idea, he wrapped a photographic plate with black paper, placed a coin on the
paper, covered the coin with a uranium-containing fluorescent material, and
exposed the entire assembly to sunlight. When he developed the film, a clear
image of the coin could be seen. The fluorescent material had emitted radia-
tion (presumably X-rays) that penetrated the paper and exposed the film. On
one occasion, because the sky was overcast, Becquerel placed the experimen-
tal assembly inside a desk drawer for a few days while waiting for the
weather to clear. On resuming the experiment, Becquerel decided to replace
the original photographic film, expecting that it may have become slightly
exposed. He developed the original film and found that instead of the
expected feeble image, there was a very sharp one. The film had become
strongly exposed because the uranium-containing material had emitted radia-
tion continuously, even when it was not fluorescing. Becquerel had discovered
radioactivity.

Ernest Rutherford (1871 1937) identified two types of radiation from
radioactive materials, alpha and beta Alpha particles carry two fun-
damental units of positive charge and have essentially the same mass as
helium atoms. In fact, alpha particles are identical to ions. Beta particles
are negatively charged particles produced by changes occurring within the
nuclei of radioactive atoms and have the same properties as electrons. A third
form of radiation, which is not affected by electric or magnetic fields, was
discovered in 1900 by Paul Villard. This radiation, called gamma rays 1g2,

He2+

1b2.1a2

FIGURE 2-8
Millikan s oil-drop experiment
Ions (charged atoms or molecules) are produced by
energetic radiation, such as X-rays (X). Some of these
ions become attached to oil droplets, giving them a
net charge. The fall of a droplet in the electric field
between the condenser plates is speeded up or
slowed down, depending on the magnitude and sign
of the charge on the droplet. By analyzing data from
a large number of droplets, Millikan concluded that
the magnitude of the charge, q, on a droplet is an
integral multiple of the electric charge, e. That is,

(where ).n = 1, 2, 3, Áq = ne
Electrically charged 

condenser plates

+

X

 FIGURE 2-9
The plum-pudding 
atomic model
According to this model, a
helium atom would have a 

cloud of positive charge
and two electrons If 
a helium atom loses one
electron, it becomes charged
and is called an ion. This ion,
referred to as has a net
charge of If the helium
atom loses both electrons, the

ion forms.He2+

1+ .
He+,

1-22.
+2

Helium atom

He

Helium ion

He*

Helium ion

He2*

*2

*2*2

*

*

*
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42 Chapter 2 Atoms and the Atomic Theory

is not made up of particles; it is electromagnetic radiation of extremely
high penetrating power. These three forms of radioactivity are illustrated in
Figure 2-10.

By the early 1900s, additional radioactive elements were discovered, princi-
pally by Marie and Pierre Curie. Rutherford and Frederick Soddy made another
profound finding: The chemical properties of a radioactive element change as it
undergoes radioactive decay. This observation suggests that radioactivity
involves fundamental changes at the subatomic level in radioactive decay, one
element is changed into another, a process known as transmutation.

2-3 The Nuclear Atom
In 1909, Rutherford, with his assistant Hans Geiger, began a line of research
using particles as probes to study the inner structure of atoms. Based on
Thomson s plum-pudding model, Rutherford expected that most particles in
a beam of particles would pass through thin sections of matter largely unde-
flected, but that some particles would be slightly scattered or deflected as
they encountered electrons. By studying these scattering patterns, he hoped to
deduce something about the distribution of electrons in atoms.

The apparatus used for these studies is pictured in Figure 2-11. Alpha parti-
cles were detected by the flashes of light they produced when they struck a
zinc sulfide screen mounted on the end of a telescope. When Geiger and Ernst
Marsden, a student, bombarded very thin foils of gold with particles, they
observed the following:

The majority of particles penetrated the foil undeflected.

Some particles experienced slight deflections.

A few (about 1 in every 20,000) suffered rather serious deflections as they
penetrated the foil.

A similar number did not pass through the foil at all, but bounced back in
the direction from which they had come.

The large-angle scattering greatly puzzled Rutherford. As he commented
some years later, this observation was about as credible as if you had fired a
15-inch shell at a piece of tissue paper and it came back and hit you.  By 1911,
though, Rutherford had an explanation. He based his explanation on a model
of the atom known as the nuclear atom and having these features:

1. Most of the mass and all of the positive charge of an atom are centered in a
very small region called the nucleus. The remainder of the atom is mostly
empty space.

2. The magnitude of the positive charge is different for different atoms and is
approximately one-half the atomic weight of the element.

3. There are as many electrons outside the nucleus as there are units of posi-
tive charge on the nucleus. The atom as a whole is electrically neutral.

a

a

a

a

a

a

 FIGURE 2-10
Three types of radiation
from radioactive materials
The radioactive material is
enclosed in a lead block. All the
radiation except that passing
through the narrow opening is
absorbed by the lead. When
the escaping radiation is
passed through an electric
field, it splits into three beams.
One beam is undeflected
these are gamma rays. A
second beam is attracted to the
negatively charged plate.
These are the positively
charged alpha particles.
The third beam, of negatively
charged beta particles, 
is deflected toward the 
positive plate.

1b2

1a2

1g2

* +

Electric

field
Radioactive

materialLead

block

Beta

particles

Alpha

particles

Gamma

rays

FIGURE 2-11
The scattering of particles by
metal foil
The telescope travels in a circular 
track around an evacuated chamber
containing the metal foil. Most 
particles pass through the metal foil
undeflected, but some are deflected
through large angles.

a

A

Alpha particlesLead shield

Radium

Metal foil

Telescope

Perhaps because he found
it tedious to sit in the dark
and count spots of light on a
zinc sulfide screen, Geiger
was motivated to develop an
automatic radiation detector.
The result was the well-
known Geiger counter.
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2-3 The Nuclear Atom 43

 FIGURE 2-12
Explaining the results of scattering experiments
(a) Rutherford s expectation was that small, positively charged particles should pass
through the nebulous, positively charged cloud of the Thomson plum-pudding model
largely undeflected. Some would be slightly deflected by passing near electrons
(present to neutralize the positive charge of the cloud). (b) Rutherford s explanation was
based on a nuclear atom. With an atomic model having a small, dense, positively
charged nucleus and extranuclear electrons, we would expect the four different types
of paths actually observed:

1. undeflected straight-line paths exhibited by most of the particles
2. slight deflections of particles passing close to electrons
3. severe deflections of particles passing close to a nucleus
4. reflections from the foil of particles approaching a nucleus head-ona

a

a

a

a
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(a) (b)

Rutherford s initial expectation and his explanation of the experi-
ments are described in Figure 2-12.

Discovery of Protons and Neutrons
Rutherford s nuclear atom suggested the existence of positively charged fun-
damental particles of matter in the nuclei of atoms. Rutherford himself discov-
ered these particles, called protons, in 1919 in studies involving the scattering
of particles by nitrogen atoms in air. The protons were freed as a result of col-
lisions between particles and the nuclei of nitrogen atoms. At about this same
time, Rutherford predicted the existence in the nucleus of electrically neutral
fundamental particles. In 1932, James Chadwick showed that a newly discov-
ered penetrating radiation consisted of beams of neutral particles. These parti-
cles, called neutrons, originated from the nuclei of atoms. Thus, it has been
only for about the past 100 years that we have had the atomic model suggested
by Figure 2-13.

a

a

a-particle

2-3 CONCEPT ASSESSMENT 

In light of information presented to this point in the text, explain which of 
the three assumptions of Dalton s atomic theory (page 37) can still be
considered correct and which cannot.

 FIGURE 2-13
The nuclear atom
illustrated by the 
helium atom
In this drawing, electrons 
are shown much closer to 
the nucleus than is the case.
The actual situation is more
like this: If the entire atom
were represented by a room,

the nucleus
would occupy only about as
much space as the period at
the end of this sentence.

5 m * 5 m * 5 m,

e

p

nn

p

e

+

+

*

*
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44 Chapter 2 Atoms and the Atomic Theory

The masses of the proton
and neutron are different in
the fourth significant figure.
The charges of the proton
and electron, however, are
believed to be exactly equal
in magnitude (but opposite
in sign). The charges and
masses are known much
more precisely than suggested
here. More precise values
are given on the inside
back cover.

*

TABLE 2.1 Properties of Three Fundamental Particles

Electric Charge Mass

SI (C) Atomic SI (g) Atomic (u)a

Proton +1.6022 * 10-19 +1 1.6726 * 10-24 1.0073
Neutron 0 0 1.6749 * 10-24 1.0087

Electron -1.6022 * 10-19
-1 9.1094 * 10-28 0.00054858

au is the SI symbol for atomic mass unit (abbreviated as amu).

Properties of Protons, Neutrons, and Electrons

The number of protons in a given atom is called the atomic number, or the
proton number, Z. The number of electrons in the atom is also equal to Z
because the atom is electrically neutral. The total number of protons and neu-
trons in an atom is called the mass number, A. The number of neutrons, the
neutron number, is An electron carries an atomic unit of negative
charge, a proton carries an atomic unit of positive charge, and a neutron is
electrically neutral. Table 2.1 presents the charges and masses of protons, neu-
trons, and electrons in two ways.

The atomic mass unit (described more fully on page 46) is defined as exactly
of the mass of the atom known as carbon-12 (read as carbon twelve). An

atomic mass unit is abbreviated as amu and denoted by the symbol u. As we
see from Table 2.1, the proton and neutron masses are just slightly greater than
1 u. By comparison, the mass of an electron is only about 1/2000th the mass of
the proton or neutron.

The three subatomic particles considered in this section are the only ones
involved in the phenomena of interest to us in this text. You should be aware,
however, that a study of matter at its most fundamental level must consider
many additional subatomic particles. The electron is believed to be a truly fun-
damental particle. However, modern particle physics now considers the neu-
tron and proton to be composed of other, more fundamental particles.

2-4 Chemical Elements

Now that we have acquired some fundamental ideas about atomic structure,
we can more thoroughly discuss the concept of chemical elements.

All atoms of a particular element have the same atomic number, Z, and,
conversely, all atoms with the same number of protons are atoms of the
same element. The elements shown on the inside front cover have atomic
numbers from to . Each element has a name and a distinctive
symbol. Chemical symbols are one- or two-letter abbreviations of the
name (usually the English name). The first (but never the second) letter of
the symbol is capitalized; for example: carbon, C; oxygen, O; neon, Ne; and
silicon, Si. Some elements known since ancient times have symbols based on
their Latin names, such as Fe for iron (ferrum) and Pb for lead (plumbum). The
element sodium has the symbol Na, based on the Latin natrium for sodium
carbonate. Potassium has the symbol K, based on the Latin kalium for potas-
sium carbonate. The symbol for tungsten, W, is based on the German wolfram.

Elements beyond uranium do not occur naturally and must be
synthesized in particle accelerators (described in Chapter 25). Elements of the
very highest atomic numbers have been produced only on a limited number
of occasions, a few atoms at a time. Inevitably, controversies have arisen about

1Z = 922

Z = 112Z = 1

1>12

A - Z.

Other atomic symbols not
based on English names
include Cu, Ag, Sn, Sb, Au,
and Hg.

*

The discovery of element
112 has recently been authen-
ticated by IUPAC. However,
element 112 has not yet been
given a name or symbol.

*
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2-4 Chemical Elements 45

which research team discovered a new element and, in fact, whether a discovery
was made at all. However, international agreement has been reached on the first
112 elements; each one, except element 112, has an official name and symbol.

Isotopes

To represent the composition of any particular atom, we need to specify its
number of protons (p), neutrons (n), and electrons (e). We can do this with the
symbolism

(2.1)

This symbolism indicates that the atom is element E and that it has atomic num-
ber Z and mass number A. For example, an atom of aluminum represented as

has 13 protons and 14 neutrons in its nucleus and 13 electrons outside the
nucleus. (Recall that an atom has the same number of electrons as protons.)

Contrary to what Dalton thought, we now know that atoms of an element
do not necessarily all have the same mass. In 1912, J. J. Thomson measured
the mass-to-charge ratios of positive ions formed from neon atoms. From
these ratios he deduced that about 91% of the atoms had one mass and that the
remaining atoms were about 10% heavier. All neon atoms have 10 protons in
their nuclei, and most have 10 neutrons as well. A very few neon atoms, how-
ever, have 11 neutrons and some have 12. We can represent these three differ-
ent types of neon atoms as

Atoms that have the same atomic number (Z) but different mass numbers (A)
are called isotopes. Of all Ne atoms on Earth, 90.51% are The percentages
of and are 0.27% and 9.22%, respectively. These percentages
90.51%, 0.27%, 9.22% are the percent natural abundances of the three neon
isotopes. Sometimes the mass numbers of isotopes are incorporated into the
names of elements, such as neon-20 (neon twenty). Percent natural abundances
are always based on numbers, not masses. Thus, 9051 of every 10,000 neon
atoms are neon-20 atoms. Some elements, as they exist in nature, consist of just
a single type of atom and therefore do not have naturally occurring isotopes.*
Aluminum, for example, consists only of aluminum-27 atoms.

Ions

When atoms lose or gain electrons, for example, in the course of a chemical
reaction, the species formed are called ions and carry net charges. Because an
electron is negatively charged, adding electrons to an electrically neutral atom
produces a negatively charged ion. Removing electrons results in a positively
charged ion. The number of protons does not change when an atom becomes
an ion. For example, and are ions. The first one has 10 protons,
10 neutrons, and 9 electrons. The second one also has 10 protons, but 12 neu-
trons and 8 electrons. The charge on an ion is equal to the number of protons
minus the number of electrons. That is

(2.2)

Another example is the ion. In this ion, there are 8 protons (atomic
number 8), 8 neutrons and 10 electrons
18 - 10 = -22.

1mass number - atomic number2,

16O2-

number p
A #
Z

22Ne2+20Ne+

10
22Ne10

21Ne
10
20Ne.

10
20Ne 10

21Ne 10
22Ne

13
27Al

E
number p * number n

symbol of element
number p

A
Z

Because neon is the only
element with the
symbols and

convey the same mean-
ing as and 10

22Ne.10
20Ne, 10

21Ne,

22Ne

21Ne,20Ne,
Z = 10,

*

Odd-numbered elements
tend to have fewer isotopes
than do even-numbered 
elements. Section 25-7 will
explain why.

*

Usually all the isotopes
of an element share the
same name and atomic 
symbol. The exception is
hydrogen. Isotope is
called deuterium (symbol D),
and is tritium (T).1

3H

1
2H

*

In this expression, # indi-
cates that the charge is written
with the number (#) before the

or sign. However, when 
the charge is or , the
number 1 is not included.

1-1+
-+

;*

*Nuclide is the general term used to describe an atom with a particular atomic number and
mass number. Although there are several elements with only one naturally occurring nuclide, it
is possible to produce additional nuclides of these elements isotopes by artificial means
(Section 25-3). The artificial isotopes are radioactive, however. In all, the number of synthetic
isotopes exceeds the number of naturally occurring ones by several fold.
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46 Chapter 2 Atoms and the Atomic Theory

2-4 CONCEPT ASSESSMENT 

What is the single exception to the statement that all atoms comprise protons,
neutrons, and electrons?

Isotopic Masses
We cannot determine the mass of an individual atom just by adding up the
masses of its fundamental particles. When protons and neutrons combine to
form a nucleus, a very small portion of their original mass is converted to
energy and released. However, we cannot predict exactly how much this so-
called nuclear binding energy will be. Determining the masses of individual
atoms, then, is something that must be done by experiment, in the following
way. By international agreement, one type of atom has been chosen and
assigned a specific mass. This standard is an atom of the isotope carbon-12,
which is assigned a mass of exactly 12 atomic mass units, that is, 12 u. Next,
the masses of other atoms relative to carbon-12 are determined with a mass
spectrometer. In this device, a beam of gaseous ions passing through electric
and magnetic fields separates into components of differing masses. The

Ordinarily we expect 
like-charged objects (such as
protons) to repel each other.
The forces holding protons
and neutrons together in
the nucleus are very much
stronger than ordinary
electrical forces (Section 25-6).

*

This definition also
establishes that one atomic
mass unit (1 u) is exactly
the mass of a carbon-12 atom.

1>12

*

EXAMPLE 2-3 Relating the Numbers of Protons, Neutrons, and Electrons in Atoms and Ions

Through an appropriate symbol, indicate the number of protons, neutrons, and electrons in (a) an atom of
barium-135 and (b) the double negatively charged ion of selenium-80.

Analyze
Given the name of an element, we can find the symbol and the atomic number, Z, for that element from a list
of elements or a periodic table. To determine the number of protons, neutrons, and electrons, we make use of
the following relationships:

Z number p A number p number n charge number p number e

The relationships above are summarized in expression (2.2).

Solve
(a) We are given the name (barium) and the mass number of the atom (135). From a list of the elements or

a periodic table we obtain the symbol (Ba) and the atomic number leading to the symbolic
representation

From this symbol one can deduce that the neutral atom has 56 protons; a neutron number of
neutrons; and a number of electrons equal to Z, that is, 56 electrons.

(b) We are given the name (selenium) and the mass number of the ion (80). From a list of the elements or a
periodic table we obtain the symbol (Se) and the atomic number (34). Together with the fact that the ion
carries a charge of we have the data required to write the symbol

From this symbol, we can deduce that the ion has 34 protons; a neutron number of 
neutrons; and 36 electrons, leading to a net charge of 

Assess
When writing the symbol for a particular atom or ion, we often omit the atomic number. For example, for 
and , we often use the simpler representations and .

PRACTICE EXAMPLE A: Use the notation to represent the isotope of silver having a neutron number of 62.

PRACTICE EXAMPLE B: Use the notation to represent a tin ion having the same number of electrons as an
atom of the isotope cadmium-112. Explain why there can be more than one answer.

Z
A
E

Z
AE

80Se2-135Ba34
80Se2-

 56
135Ba

+34 - 36 = -2.80 - 34 = 46
A - Z =

34
80Se2-

2- ,

A - Z = 135 - 56 = 79

 56
135Ba

1Z = 562,

-=+==
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 FIGURE 2-14
A mass spectrometer and mass spectrum
In this mass spectrometer, a gaseous sample is ionized by bombardment with electrons
in the lower part of the apparatus (not shown). The positive ions thus formed are
subjected to an electrical force by the electrically charged velocity selector plates and a
magnetic force by a magnetic field perpendicular to the page. Only ions with a particular
velocity pass through and are deflected into circular paths by the magnetic field. Ions
with different masses strike the detector (here a photographic plate) in different regions.
The more ions of a given type, the greater the response of the detector (intensity of line
on the photographic plate). In the mass spectrum shown for mercury, the response of the
ion detector (intensity of lines on photographic plate) has been converted to a scale of
relative numbers of atoms. The percent natural abundances of the mercury isotopes are

0.146%; 10.02%; 16.84%; 23.13%; 13.22%; 
29.80%; and 6.85%.204Hg,

202Hg,201Hg,200Hg,199Hg,198Hg,196Hg,

separated ions are focused on a measuring instrument, which records their
presence and amounts. Figure 2-14 illustrates mass spectrometry and a typi-
cal mass spectrum.

Although mass numbers are whole numbers, the actual masses of individual
atoms (in atomic mass units, u) are never whole numbers, except for carbon-12.
However, they are very close in value to the corresponding mass numbers, as we
can see for the isotope oxygen-16. From mass spectral data the ratio of the mass
of to is found to be 1.33291. Thus, the mass of the oxygen-16 atom is

which is very nearly equal to the mass number of 16.

1.33291 * 12 u = 15.9949 u

12C16O

The primary standard for
atomic masses has evolved
over time. For example,
Dalton originally assigned H
a mass of 1 u. Later, chemists
took naturally occurring
oxygen at 16 u to be the
definition of the atomic-
weight scale. Concurrently,
physicists defined the
oxygen-16 isotope as 16 u.
This resulted in conflicting
values. In 1971 the adoption
of carbon-12 as the universal
standard resolved this
disparity.

EXAMPLE 2-4 Establishing Isotopic Masses by Mass Spectrometry

With mass spectral data, the mass of an oxygen-16 atom is found to be 1.06632 times that of a nitrogen-15 atom. 

Given that 16O has a mass of 15.9949 u (see above), what is the mass of a nitrogen-15 atom, in u?

Analyze
Given the ratio (mass of 16O)/(mass of 15N) = 1.06632 and the mass of 16O, 15.9949 u, we solve for the mass of 15N.

Solve
We know that

mass of 16O

mass of 15N
= 1.06632

(continued)
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48 Chapter 2 Atoms and the Atomic Theory

We solve the expression above for the mass of 15N and then substitute 15.9949 u for the mass of 16O. We obtain
the result

Assess

The mass of 15N is very nearly 15, as we should expect. If we had mistakenly multiplied instead of dividing 
by the ratio 1.06632, the result would have been slightly larger than 16 and clearly incorrect.

PRACTICE EXAMPLE A: What is the ratio of masses for if the isotopic mass for is 201.97062 u?

PRACTICE EXAMPLE B: An isotope with atomic number 64 and mass number 158 is found to have a mass ratio
relative to that of carbon-12 of 13.16034. What is the isotope, what is its atomic mass in u, and what is its mass
relative to oxygen-16?

202Hg202Hg>12C,

mass of 15N =
mass of 16O

1.06632
=

15.9949 u

1.06632
= 15.0001 u

2-5 Atomic Mass

In a table of atomic masses, the value listed for carbon is 12.0107, yet the
atomic mass standard is exactly 12. Why the difference? The atomic mass
standard is based on a sample of carbon containing only atoms of carbon-12,
whereas naturally occurring carbon contains some carbon-13 atoms as well.
The existence of these two isotopes causes the observed atomic mass to be
greater than 12. The atomic mass (weight)* of an element is the average of
the isotopic masses, weighted according to the naturally occurring abun-
dances of the isotopes of the element. In a weighted average, we must assign
greater importance give greater weight to the quantity that occurs more
frequently. Since carbon-12 atoms are much more abundant than carbon-13,
the weighted average must lie much closer to 12 than to 13. This is the result
that we get by applying the following general equation, where the right-
hand side of the equation includes one term for each naturally occurring
isotope.

(2.3)

The first term on the right side of equation (2.3) represents the contribution
from isotope 1; the second term represents the contribution from isotope 2;
and so on. 

We will use equation (2.3), with appropriate data, in Example 2-6, but first
let us illustrate the ideas of fractional abundance and a weighted average in a
different way in establishing the atomic mass of naturally occurring carbon.
The mass spectrum of carbon shows that 98.93% of carbon atoms are carbon-
12 with a mass of exactly 12 u; the rest are carbon-13 atoms with a mass of
13.0033548378 u. Therefore:

 = 12.0107 u

 = 13.0033548378 u - 0.9893

 = 13.0033548378 u - 0.9893 * 11.0033548378 u2

 = 13.0033548378 u - 0.9893 * 113.0033548378 u - 12 u2

 
at. mass of naturally

occurring carbon = 0.9893 * 12 u + (1 - 0.9893) * 13.0033548378 u

at. mass

of an

element

= +

fractional

abundance of

isotope 1

*

mass of

isotope 1

 

* + +

fractional

abundance of

isotope 2

*

mass of

isotope 2

 

* + Á

Carbon-14, used for 
radiocarbon dating, is formed
in the upper atmosphere. 
The amount of carbon-14 on
Earth is too small to affect the
atomic mass of carbon.

*

KEEP IN MIND

that the fractional abundance
is the percent abundance
divided by 100%. Thus, a
98.93% abundance is a 0.9893
abundance.

*Since Dalton s time, atomic masses have been called atomic weights. They still are by most
chemists, yet what we are describing here is mass, not weight. Old habits die hard.
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2-5 Atomic Mass 49

It is important to note that, in the setup above, 12 u and the 1  appearing in
the factor (1 0.9893) are exact numbers. Thus, by applying the rules for sig-
nificant figures (see Chapter 1), the atomic mass of carbon can be reported
with four decimal places.

To determine the atomic mass of an element having three naturally occur-
ring isotopes, such as potassium, we would have to include three contribu-
tions in the weighted average, and so on.

The percent natural abundances of most of the elements remain very
nearly constant from one sample of matter to another. For example, the
proportions of and atoms are the same in samples of pure carbon
(diamond), carbon dioxide gas, and a mineral form of calcium carbonate
(calcite). We can treat all natural carbon-containing materials as if there
were a single hypothetical type of carbon atom with a mass of 12.0107 u. This
means that once weighted-average atomic masses have been determined and
tabulated, we can simply use these values in calculations requiring atomic
masses.

Sometimes a qualitative understanding of the relationship between isotopic
masses, percent natural abundances, and weighted-average atomic mass is all
that we need, and no calculation is necessary, as illustrated in Example 2-5.
Example 2-6 and the accompanying Practice Examples provide additional
applications of equation (2.3).

13C12C

-

EXAMPLE 2-5 Understanding the Meaning of a Weighted-Average Atomic Mass

The two naturally occurring isotopes of lithium, lithium-6 and lithium-7, have masses of 6.01512 u and 7.01600 u,
respectively. Which of these two occurs in greater abundance?

Analyze
Look up the atomic mass of Li and compare it with the masses of 6Li and 7Li. If the atomic mass of Li is closer
to that of 6Li, then 6Li is the more abundant isotope. If the atomic mass of Li is closer to that of 7Li, then 7Li is
the more abundant isotope.

Solve
From a table of atomic masses (inside the front cover), we see that the atomic mass of lithium is 6.941 u.
Because this value a weighted-average atomic mass is much closer to 7.01600 u than to 6.01512 u,
lithium-7 must be the more abundant isotope.

Assess
Atomic masses of specific isotopes can be determined very precisely. The values given above for 6Li and 7Li
have been rounded to five decimal places. The precise values are 6.015122795 u and 7.01600455 u.

PRACTICE EXAMPLE A: The two naturally occurring isotopes of boron, boron-10 and boron-11, have masses of
10.0129370 u and 11.0093054 u, respectively. Which of these two occurs in greater abundance?

PRACTICE EXAMPLE B: Indium has two naturally occurring isotopes and a weighted atomic mass of 114.818 u.
One of the isotopes has a mass of 112.904058 u. Which of the following must be the second isotope: 

or Which of the two naturally occurring isotopes must be the more abundant?115In?112In, 114In,

111In,

The table of atomic masses (inside the front cover) shows that some atomic
masses are stated more precisely than others. For example, the atomic mass of
F is given as 18.9984 u and that of Kr is given as 83.798 u. In fact, the atomic
mass of fluorine is known even more precisely (18.9984032 u); the value of
18.9984 u has been rounded off to six significant figures. Why is the atomic
mass of F known so much more precisely than that of Kr? Only one type of
fluorine atom occurs naturally: fluorine-19. Determining the atomic mass of
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50 Chapter 2 Atoms and the Atomic Theory

EXAMPLE 2-6 Relating the Masses and Natural Abundances 
of Isotopes to the Atomic Mass of an Element

Bromine has two naturally occurring isotopes. One of them, bromine-79, has a mass of 78.9183 u and an abun-
dance of 50.69%. What must be the mass and percent natural abundance of the other, bromine-81?

Analyze
Although the atomic mass of Br is not given explicitly, it is a known quantity. From the inside front cover, we
find that the atomic mass of Br is 79.904 u. We need to apply two key concepts: (1) the atomic mass of Br is a
weighted average of the masses of 79Br and 81Br, and (2) the percent natural abundances of 79Br and 81Br must
add up to 100%.

Solve
The atomic mass of Br is a weighted average of the masses of 79Br and 81Br:

Because the percent natural abundances must total 100%, the percent natural abundance of 81Br is 
100% 50.69% = 49.31%. Substituting 79.904 u for the atomic mass, 78.9183 u for the mass of 79Br, and the
fractional abundances of the two isotopes, we obtain

To four significant figures, the natural abundance of the bromine-81 isotope is 49.31% and its mass is 
80.92 u.

Assess
We can check the final result by working the problem in reverse and using numbers that are slightly rounded. 
The atomic mass of Br is 50.69% + 78.92 u * 49.31% + 80.92 u (79 u + 81 u) 80 u. The estimated atomic 
mass (80 u) is close to the actual atomic mass of 79.904 u.

PRACTICE EXAMPLE A: The masses and percent natural abundances of the three naturally occurring isotopes
of silicon are 27.9769265325 u, 92.223%; 28.976494700 u, 4.685%; 29.973377017 u, 3.092%.
Calculate the weighted-average atomic mass of silicon.

PRACTICE EXAMPLE B: Use data from Example 2-5 to determine the percent natural abundances of lithium-6
and lithium-7.

30Si,29Si,28Si,

=L
1
2

 mass of 81Br =
79.904 u - 40.00 u

0.4931
= 80.92 u

 = 40.00 u + 10.4931 * mass of 81Br2

 79.904 u = 10.5069 * 78.9183 u2 + 10.4931 * mass of 81Br2

-

atomic mass = +

fraction of atoms 

that are 79Br *

mass of 79Br

* + +

fraction of atoms 

that are 81Br *

mass of 81Br

*

2-5 CONCEPT ASSESSMENT 

The value listed for chromium in the table of atomic masses inside the front
cover is 51.9961 u. Should we conclude that naturally occurring chromium
atoms are all of the type The same table lists a value of 65.409 u for zinc.
Should we conclude that zinc occurs as a mixture of isotopes? Explain.

24
52Cr?

fluorine means establishing the mass of this type of atom as precisely as possi-
ble. The atomic mass of krypton is known less precisely because krypton has
six naturally occurring isotopes. Because the percent distribution of the iso-
topes of krypton differs very slightly from one sample to another,
the weighted-average atomic mass of krypton cannot be stated with high
precision.
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2-6 Introduction to the Periodic Table 51

2-6 Introduction to the Periodic Table

Scientists spend a lot of time organizing information into useful patterns.
Before they can organize information, however, they must possess it, and it
must be correct. Botanists had enough information about plants to organize
their field in the eighteenth century. Because of uncertainties in atomic masses
and because many elements remained undiscovered, chemists were not able
to organize the elements until a century later.

We can distinguish one element from all others by its particular set of
observable physical properties. For example, sodium has a low density of

and a low melting point of 97.81 °C. No other element has this
same combination of density and melting point. Potassium, though, also has
a low density and low melting point (63.65 °C), much like
sodium. Sodium and potassium further resemble each other in that both are
good conductors of heat and electricity, and both react vigorously with water
to liberate hydrogen gas. Gold, conversely, has a density and
melting point (1064 °C) that are very much higher than those of sodium or
potassium, and gold does not react with water or even with ordinary acids. It
does resemble sodium and potassium in its ability to conduct heat and elec-
tricity, however. Chlorine is very different still from sodium, potassium, and
gold. It is a gas under ordinary conditions, which means that the melting point
of solid chlorine is far below room temperature. Also, chlorine is a
nonconductor of heat and electricity.

Even from these very limited data, we get an inkling of a useful classifi-
cation scheme of the elements. If the scheme is to group together elements
with similar properties, then sodium and potassium should appear in the
same group. And if the classification scheme is in some way to distinguish
between elements that are good conductors of heat and electricity and those
that are not, chlorine should be set apart from sodium, potassium, and gold.
The classification system we need is the one shown in Figure 2-15 (and
inside the front cover), known as the periodic table of the elements. In

1-101 °C2

119.32 g>cm3
2

10.862 g>cm3
2

0.971 g>cm3

*Lanthanide

series

Actinide

series

1

1A

2

2A

3

3B

4

4B

5

5B

6

6B

7

7B

11

1B

12

2B

13

3A
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4A
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5A

16

6A

17

7A

18

8A

9

8B

8 10

1

H
1.00794

3

Li
6.941

11

Na
22.9898

19

K
39.0983

37

Rb
85.4678

55

Cs
132.905

87

Fr
(223)

20

Ca
40.078

38

Sr
87.62

56

Ba
137.327

88

Ra
(226)

21

Sc
44.9559

39

Y
88.9059

57 71

La Lu

89 103

Ac Lr

22

Ti
47.867

40

Zr
91.224

72

Hf
178.49

Rf
104

 (261)

23

V
50.9415

41

Nb
92.9064

73

Ta
180.948

42

Mo
95.94

74

W
183.84

25

Mn
54.9380

43

Tc
(98)

75

Re
186.207

26

Fe
55.845
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Ru
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63.546
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65.409
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Hg
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Ga
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208.980
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Se
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Te
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84

Po
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Br
79.904
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126.904

85
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5
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6
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7
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58
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158.925
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(247)

66

Dy
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98
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(251)
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Ho
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99

Es
(252)
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Er
167.259

100
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(257)

69
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168.934

101

Md
(258)

70

Yb
173.04

102

No
(259)

71

Lu
174.967

103

Lr
(262)

24

Cr
51.9961

 FIGURE 2-15
Periodic table of the elements

Atomic masses are relative to carbon-12. For certain radioactive elements, the
numbers listed in parentheses are the mass numbers of the most stable isotopes.
Metals are shown in tan, nonmetals in blue, and metalloids in green. The noble gases
(also nonmetals) are shown in pink.

KEEP IN MIND

that the periodic table shown
in Figure 2-15 is the one 
currently recommended by
IUPAC. The discovery of ele-
ment 112 has recently been
authenticated by IUPAC (in
May 2009) but the element
has not yet been named.
Elements with atomic num-
bers greater than 112 have
been reported but not fully
authenticated. In Figure 2-15,
lutetium (Lu) and 
lawrencium (Lr) are the last
members of the lanthanide
and actinide series, respec-
tively. A strong argument*
has been made for placing Lu
and Lr in group 3, meaning
the lanthanide series would
end with ytterbium (Yb) and
the actinide series would end
with nobelium (Nb). To date,
IUPAC has not endorsed
placing Lu and Lr in group 3.

* See W. B. Jensen, J. Chem. Educ., 59,
634 (1982).
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52 Chapter 2 Atoms and the Atomic Theory

Chapter 9, we will describe how the periodic table was formulated, and we
will also learn its theoretical basis. For the present, we will consider only a
few features of the table.

Features of the Periodic Table In the periodic table, elements are listed accord-
ing to increasing atomic number starting at the upper left and arranged in a
series of horizontal rows. This arrangement places similar elements in vertical
groups, or families. For example, sodium and potassium are found together in 
a group labeled 1 (called the alkali metals). We should expect other members of the
group, such as cesium and rubidium, to have properties similar to sodium and
potassium. Chlorine is found at the other end of the table in a group labeled 17.
Some of the groups are given distinctive names, mostly related to an important
property of the elements in the group. For example, the group 17 elements are
called the halogens, a term derived from Greek, meaning salt former.

There is lack of agreement
on just which elements to
label as metalloids. However,
they are generally considered
either to lie adjacent to the
stair-step line or to be close by.

*

Group 1: Alkali metals

Group 17: The halogens

Period 3

Each element is listed in the periodic table by placing its symbol in the mid-
dle of a box in the table. The atomic number (Z) of the element is shown above
the symbol, and the weighted-average atomic mass of the element is shown
below its symbol. Some periodic tables provide other information, such as
density and melting point, but the atomic number and atomic mass are gener-
ally sufficient for our needs. Elements with atomic masses in parentheses,
such as plutonium, Pu (244), are produced synthetically, and the number
shown is the mass number of the most stable isotope.

It is customary also to divide the elements into two broad categories metals
and nonmetals. In Figure 2-15, colored backgrounds are used to distinguish the
metals (tan) from the nonmetals (blue and pink). Except for mercury, a liquid,
metals are solids at room temperature. They are generally malleable (capable of
being flattened into thin sheets), ductile (capable of being drawn into fine wires),
and good conductors of heat and electricity, and have a lustrous or shiny appear-
ance. The properties of nonmetals are generally opposite those of metals; for
example, nonmetals are poor conductors of heat and electricity. Several of the
nonmetals, such as nitrogen, oxygen, and chlorine, are gases at room temperature.
Some, such as silicon and sulfur, are brittle solids. One bromine is a liquid.

Two other highlighted categories in Figure 2-15 are a special group of non-
metals known as the noble gases (pink), and a small group of elements, often
called metalloids (green), that have some metallic and some nonmetallic
properties.

The horizontal rows of the table are called periods. (The periods are num-
bered at the extreme left in the periodic table inside the front cover.) The first
period of the table consists of just two elements, hydrogen and helium. This is
followed by two periods of eight elements each, lithium through neon and
sodium through argon. The fourth and fifth periods contain 18 elements each,
ranging from potassium through krypton and from rubidium through xenon.
The sixth period is a long one of 32 members. To fit this period in a table that
is held to a maximum width of 18 members, 15 members of the period are
placed at the bottom of the periodic table. This series of 15 elements start with
lanthanum and these elements are called the lanthanides. The sev-
enth and final period is incomplete (some members are yet to be discovered),
but it is known to be a long one. A 15-member series is also extracted from the

1Z = 572,

That elements in one group
have similar properties is 
perhaps the most useful sim-
plifying feature of atomic
properties. Significant differ-
ences within a group do
occur. The manner and rea-
son for such differences is
much of what we try to dis-
cover in studying chemistry.

*
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2-6 Introduction to the Periodic Table 53

Mendeleev s arrangement
of the elements in the origi-
nal periodic table was based
on observed chemical and
physical properties of the ele-
ments and their compounds.
The arrangement of the ele-
ments in the modern periodic
table is based on atomic
properties atomic number
and electron configuration.

*
EXAMPLE 2-7 Describing Relationships Based on the Periodic Table

Refer to the periodic table on the inside front cover, and indicate

(a) the element that is in group 14 and the fourth period;
(b) two elements with properties similar to those of molybdenum (Mo);
(c) the ion most likely formed from a strontium atom.

Analyze
For (a), the key concept is that the rows (periods) are numbered 1 through 7, starting from the top of the peri-
odic table, and the groups are numbered 1 through 18, starting from the left side. For (b), the key concept is
that elements in the same group have similar properties. For (c), the key concept is that main-group metal
atoms in groups 1 and 2 form positive ions with charges of and , respectively.

Solve
(a) The elements in the fourth period range from K to Kr Those in group 14 are C, Si,

Ge, Sn, and Pb. The only element that is common to both of these groupings is 
(b) Molybdenum is in group 6. Two other members of this group that should resemble it are

.
(c) Strontium (Sr) is in group 2. It should form the ion 

Assess
In Chapter 8, we will examine in greater detail reasons for the arrangement of the periodic table.

PRACTICE EXAMPLE A: Write a symbol for the ion most likely formed by an atom of each of the following: 
Li, S, Ra, F, I, and Al.

PRACTICE EXAMPLE B: Classify each of the following elements as a main-group or transition element. Also,
specify whether they are metals, metalloids, or nonmetals: Na, Re, S, I, Kr, Mg, U, Si, B, Al, As, H.

Sr2+.
chromium (Cr) and tungsten (W)

Ge 1Z = 322.
1Z = 362.1Z = 192

+2+1

seventh period and placed at the bottom of the table. Because the elements in
this series start with actinium they are called the actinides.

The labeling of the groups of the periodic table has been a matter of some
debate among chemists. The 1-18 numbering system used in Figure 2-15 is the
one most recently adopted. Group labels previously used in the United States
consisted of a letter and a number, closely following the method adopted by
Mendeleev, the developer of the periodic table. As seen in Figure 2-15, the A
groups 1 and 2 are separated from the remaining A groups (3 to 8) by B groups
1 through 8. The International Union of Pure and Applied Chemistry (IUPAC)
recommended the simple 1 to 18 numbering scheme in order to avoid confu-
sion between the American number and letter system and that used in Europe,
where some of the A and B designations were switched! Currently, the IUPAC
system is officially recommended by the American Chemical Society (ACS)
and chemical societies in other nations. Because both numbering systems are
in use, we show both in Figure 2-15 and in the periodic table inside the front
cover. However, except for an occasional reminder of the earlier system, we
will use the IUPAC numbering system in this text.

Useful Relationships from the Periodic Table
The periodic table helps chemists describe and predict the properties of chem-
ical compounds and the outcomes of chemical reactions. Throughout this text,
we will use it as an aid to understanding chemical concepts. One application
of the table worth mentioning here is how it can be used to predict likely
charges on simple monatomic ions.

Main-group elements are those in groups 1, 2, and 13 to 18. When main-
group metal atoms in groups 1 and 2 form ions, they lose the same number
of electrons as the IUPAC group number. Thus, Na atoms (group 1) lose one
electron to become and Ca atoms (group 2) lose two electrons toNa+,

1Z = 892,
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54 Chapter 2 Atoms and the Atomic Theory

2-7 The Concept of the Mole and 
the Avogadro Constant

Starting with Dalton, chemists have recognized the importance of relative
numbers of atoms, as in the statement that two hydrogen atoms and one oxygen
atom combine to form one molecule of water. Yet it is physically impossible
to count every atom in a macroscopic sample of matter. Instead, some other
measurement must be employed, which requires a relationship between the
measured quantity, usually mass, and some known, but uncountable, number
of atoms. Consider a practical example of mass substituting for a desired num-
ber of items. Suppose you want to nail down new floorboards on the deck of a
mountain cabin, and you have calculated how many nails you will need. If you
have an idea of how many nails there are in a pound, then you can buy the
nails by the pound.

The SI quantity that describes an amount of substance by relating it to a
number of particles of that substance is called the mole (abbreviated mol). A
mole is the amount of a substance that contains the same number of elemen-
tary entities as there are atoms in exactly 12 g of pure carbon-12. The number
of elementary entities (atoms, molecules, and so on)  in a mole is the
Avogadro constant, 

(2.4)

The Avogadro constant consists of a number, 6.02214179 1023, known as
Avogadro s number, and a unit, . The unit signifies that the entities
being counted are those present in 1 mole.

The value of Avogadro s number is based on both a definition and a mea-
surement. A mole of carbon-12 is defined to be 12 g. If the mass of one carbon-12
atom is measured by using a mass spectrometer (see Figure 2-14), the mass
would be about g. The ratio of these two masses provides an
estimate of Avogadro s number. In actual fact, accurate determinations of
Avogadro s number make use of other measurements, not the measurement of
the mass of a single atom of carbon-12.

Often the value of is rounded off to or even to

If a substance contains atoms of only a single isotope, then

 1 mol 16O = 6.02214 * 1023 16O atoms = 15.9949 g 1and so on2

 1 mol 12C = 6.02214 * 1023 12C atoms = 12.0000 g

6.02 * 1023 mol-1.
6.022 * 1023 mol-1,NA

1.9926 * 10-23

mol-1mol-1
*

NA = 6.02214179 * 1023 mol-1

NA .

Because the value of
Avogadro s number depends,
in part, on a measurement,
the value has changed
slightly over the years. The
values recommended since
1986 by the Committee on
Data for Science and
Technology (CODATA) are
listed below.

*

When rounding Avogadro s
number or any other
accurately known value, keep
one more significant figure
than that of the least accurate
number in the calculation to
avoid rounding errors.

*
Year Avogadro s Number

1986 6.0221367 * 1023

1998 6.02214199 * 1023

2002 6.0221415 * 1023

2006 6.02214179 * 1023

become Aluminum, in group 13, loses three electrons to form 
(here the charge is group number minus 10 ). The few other metals in groups
13 and higher form more than one possible ion, a matter that we deal with in
Chapter 9.

When nonmetal atoms form ions, they gain electrons. The number of elec-
trons gained is normally 18 minus the IUPAC group number. Thus, an O atom
gains electrons to become and a Cl atom gains 
electron to become The 18 minus group number  rule suggests that an
atom of Ne in group 18 gains no electrons: The very limited ten-
dency of the noble gas atoms to form ions is one of several characteristics of
this family of elements.

The elements in groups 3 to 12 are the transition elements, and because all
of them are metals, they are also called the transition metals. Like the main-
group metals, the transition metals form positive ions, but the number of elec-
trons lost is not related in any simple way to the group number, mostly
because transition metals can form two or more ions of differing charge.

18 - 18 = 0.
Cl-.

18 - 17 = 1O2-,18 - 16 = 2

Al3+Ca2+.
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8
Electrons in Atoms

A
t the end of the nineteenth century, some observers of the scientific
scene believed that it was nearly time to close the books on the field
of physics. They thought that with the accumulated knowledge of

the previous two or three centuries, the main work left to be done was to
apply this body of physics classical physics to such fields as chemistry
and biology.

Only a few fundamental problems remained, including an explanation
of certain details of light emission and a phenomenon known as the photo-
electric effect. But the solution to these problems, rather than marking an
end in the study of physics, spelled the beginning of a new golden age of
physics. These problems were solved through a bold new proposal the
quantum theory a scientific breakthrough of epic proportions. In this
chapter, we will see that to explain phenomena at the atomic and molecular
level, classical physics is inadequate only the quantum theory will do.

The aspect of quantum mechanics emphasized in this chapter is
how electrons are described through features known as quantum numbers
and electron orbitals. The model of atomic structure developed here will
explain many of the topics discussed in the next several chapters: periodic

This image of two neurons (gray objects) is produced by an electron microscope that
relies on the wave properties of electrons discussed in this chapter.
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8-1 Electromagnetic Radiation 295

 FIGURE 8-1
The simplest wave
motion traveling wave 
in a rope
As a result of the up-and-down
hand motion (top to bottom),
waves pass along the long
rope from left to right. This
one-dimensional moving wave
is called a traveling wave. The
wavelength of the wave, 
the distance between two
successive crests is identified.

l

*

trends in the physical and chemical properties of the elements, chemical bond-
ing, and intermolecular forces.

8-1 Electromagnetic Radiation

Our understanding of the electronic structures of atoms will be gained by
studying the interactions of electromagnetic radiation and matter. The chapter
begins with background information about electromagnetic radiation, and
then turns to connections between electromagnetic radiation and atomic
structure. The best approach to learning material in this chapter is to concen-
trate on the basic ideas relating to atomic structure, many of which are illus-
trated through the in-text examples. At the same time, pursue further details
of interest in some of the Are You Wondering features and portions of Sections
8-6, 8-8, and 8-10.

Electromagnetic radiation is a form of energy transmission in which electric
and magnetic fields are propagated as waves through empty space (a vacuum)
or through a medium, such as glass. A wave is a disturbance that transmits
energy through space or a material medium. Anyone who has sat in a small boat
on a large body of water has experienced wave motion. The wave moves across
the surface of the water, and the disturbance alternately lifts the boat and allows
it to drop. Although water waves may be more familiar, let us use a simpler
example to illustrate some important ideas and terminology about waves a
traveling wave in a rope.

Imagine tying one end of a long rope to a post and holding the other end in
your hand (Fig. 8-1). Imagine also that you have marked one small segment of
the rope with red ink. As you move your hand up and down, you set up a
wave motion in the rope. The wave travels along the rope toward the distant
post, but the colored segment simply moves up and down. In relation to the
center line (the broken line in Figure 8-1), the wave consists of crests, or high
points, where the rope is at its greatest height above the center line, and
troughs, or low points, where the rope is at its greatest depth below the center
line. The maximum height of the wave above the center line or the maximum
depth below is called the amplitude. The distance between the tops of two
successive crests (or the bottoms of two troughs) is called the wavelength,
designated by the Greek letter lambda, 

Wavelength is one important characteristic of a wave. Another feature,
frequency, designated by the Greek letter nu, is the number of crests or
troughs that pass through a given point per unit of time. Frequency has the
unit, usually (per second), meaning the number of events or cycles
per second. The product of the length of a wave and the frequency 
shows how far the wave front travels in a unit of time. This is the speed of the
wave. Thus, if the wavelength in Figure 8-1 were 0.5 m and the frequency,

(meaning three complete up-and-down hand motions per second), the
speed of the wave would be 

We cannot actually see an electromagnetic wave as we do the traveling
wave in a rope, but we can try to represent it as in Figure 8-2. As the figure
shows, the magnetic field component lies in a plane perpendicular to the
electric field component. An electric field is the region around an electrically
charged particle. The presence of an electric field can be detected by measur-
ing the force on an electrically charged object when it is brought into the field.
A magnetic field is found in the region surrounding a magnet. According to a
theory proposed by James Clerk Maxwell (1831 1879) in 1865, electromag-
netic radiation a propagation of electric and magnetic fields is produced
by an accelerating electrically charged particle (a charged particle whose
velocity changes). Radio waves, for example, are a form of electromagnetic
radiation produced by causing oscillations (fluctuations) of the electric cur-
rent in a specially designed electrical circuit. With visible light, another

0.5 m * 3 s-1
= 1.5 m>s.

3 s-1

1n21l2

s-1time-1,

n,

l.

Water waves, sound
waves, and seismic waves
(which produce earthquakes)
are unlike electromagnetic
radiation. They require a
material medium for their
transmission.
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296 Chapter 8 Electrons in Atoms

form of electromagnetic radiation, the accelerating charged particles are the
electrons in atoms or molecules.

Frequency, Wavelength, and Speed 
of Electromagnetic Radiation
The SI unit for frequency, is the hertz (Hz), and the basic SI wavelength
unit is the meter (m). Because many types of electromagnetic radiation have
very short wavelengths, however, smaller units, including those listed below,
are also used. The angstrom, named for the Swedish physicist Anders
Ångström (1814 1874), is not an SI unit.

A distinctive feature of electromagnetic radiation is its constant speed of
in a vacuum, often referred to as the speed of light.

The speed of light is represented by the symbol c, and the relationship between
this speed and the frequency and wavelength of electromagnetic radiation is

2.99792458 * 108 m s-1

1 picometer (pm) = 1 * 10-12 m = 1 * 10-10 cm = 10-2 Å
1 angstrom (Å) = 1 * 10-10 m = 1 * 10-8 cm = 100 pm
1 nanometer (nm) = 1 * 10-9 m = 1 * 10-7 cm = 10 Å
1 micrometer (mm) = 1 * 10-6 m
1 millimeter (mm) = 1 * 10-3 m
1 centimeter (cm) = 1 * 10-2 m

s-1,

 FIGURE 8-2
Electromagnetic waves
This sketch of two different electromagnetic waves shows the propagation of mutually
perpendicular oscillating electric and magnetic fields. For a given wave, the wavelengths,
frequencies, and amplitudes of the electric and magnetic field components are identical. 
If these views are of the same instant of time, we would say that (a) has the longer
wavelength and lower frequency, and (b) has the shorter wavelength and higher frequency.

*

*

(b)

Electric field component

Magnetic field component

Direction

of 

travel

Direction

of 

travel

etic field component

The speed of light is
commonly rounded off
to 3.00 * 108 m s-1.

Electromagnetic waves are
transverse waves the electric
and magnetic fields are
perpendicular to the perceived
direction of motion. So, to a
first approximation, are water
waves. Sound waves, by
contrast, are longitudinal. This
effect is the result of small
pulses of pressure that move
in the same direction as the
sound travels. 

Figure 8-3 indicates the wide range of possible wavelengths and frequencies
for some common types of electromagnetic radiation and illustrates this
important fact: The wavelength of electromagnetic radiation is shorter for
high frequencies and longer for low frequencies. Example 8-1 illustrates the
use of equation (8.1).

(8.1)c = n * l
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 FIGURE 8-3
The electromagnetic spectrum
The visible region, which extends from violet at the shortest wavelength to red at the
longest wavelength, is only a small portion of the entire spectrum. The approximate
wavelength and frequency ranges of some other forms of electromagnetic radiation
are also indicated.

EXAMPLE 8-1 Relating Frequency and Wavelength of Electromagnetic Radiation

Most of the light from a sodium vapor lamp has a wavelength of 589 nm. What is the frequency of this radiation?

Analyze
To use equation (8.1), we first convert the wavelength of the light from nanometers to meters, since the speed
of light is in Then, we rearrange it to the form and solve for 

Solve
Change the units of from nanometers to meters.

Rearrange equation (8.1) to the form and solve for 

Assess
The essential element here is to recognize the need to change the units of This change is often needed when
converting wavelength to frequency and vice versa.

PRACTICE EXAMPLE A: The light from red LEDs (light-emitting diodes) is commonly seen in many electronic
devices. A typical LED produces 690 nm light. What is the frequency of this light?

PRACTICE EXAMPLE B: An FM radio station broadcasts on a frequency of 91.5 megahertz (MHz). What is the
wavelength of these radio waves in meters?

l.

n =
c

l
=

2.998 * 108
 m s-1

5.89 * 10-7
 m

= 5.09 * 1014
 s-1

= 5.09 * 1014
 Hz

n.n = c>l,

 n = ?

 c = 2.998 * 108
 m s-1

 l = 589 nm *
1 * 10-9

 m

1 nm
= 5.89 * 10-7

 m

l

n.n = c>lm s-1.
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298 Chapter 8 Electrons in Atoms

The wave nature of light is
demonstrated by its ability to
be dispersed by diffraction
and refraction.

KEEP IN MIND

that destructive interference
occurs when waves are 
out of phase by one-half
wavelength. If waves are out
of phase by more or less than
this, but also not completely
in phase, then only partial
destructive interference
occurs.

An Important Characteristic of Electromagnetic Waves
The properties of electromagnetic radiation that we will use most extensively
are those just introduced amplitude, wavelength, frequency, and speed.
Another essential characteristic of electromagnetic radiation, which will under-
pin our discussion of atomic structure later in the chapter, is described next.

If two pebbles are dropped close together into a pond, ripples (waves)
emerge from the points of impact of the two stones. The two sets of waves
intersect, and there are places where the waves disappear and places where the
waves persist, creating a crisscross pattern (Fig. 8-4a). Where the waves are in
step  upon meeting, their crests coincide, as do their troughs. The waves com-
bine to produce the highest crests and deepest troughs in the water. The waves
are said to be in phase, and the addition of the waves is called constructive inter-
ference (Fig. 8-5a). Where the waves meet in such a way that the peak of one
wave occurs at the trough of another, the waves cancel and the water is flat
(Fig. 8-5b). These out-of-step waves are said to be out of phase, and the cancella-
tion of the waves is called destructive interference.

An everyday illustration of interference involving electromagnetic waves
is seen in the rainbow of colors that shine from the surface of a compact disc
(Fig. 8-4b). White light, such as sunlight, contains all the colors of the rainbow.
The colors differ in wavelength (and frequency), and when these different
wavelength components are reflected off the tightly spaced grooves of the CD,

(b)(a)

FIGURE 8-4
Examples of interference
(a) Stones and ripples. 
(b) CD reflection.

(a) (b)

 FIGURE 8-5
Interference in two overlapping light waves
(a) In constructive interference, the troughs and crests are in step (in phase), leading 
to addition of the two waves. (b) In destructive interference, the troughs and crests 
are out of step (out of phase), leading to cancellation of the two waves.
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8-1 Electromagnetic Radiation 299

they travel slightly different distances. This creates phase differences that
depend on the angle at which we hold the CD to the light source. The light
waves in the beam interfere with each other, and, for a given angle between the
incoming and reflected light, all colors cancel except one. Light waves of that
color interfere constructively and reinforce one another. Thus, as we change the
angle of the CD to the light source, we see different colors. The dispersion of
different wavelength components of a light beam through the interference pro-
duced by reflection from a grooved surface is called diffraction.

8-1 ARE YOU WONDERING...

What happens to the energy of an electromagnetic wave
when interference takes place?

As noted in Figure 8-2, an electromagnetic wave is made up of oscillating electric
and magnetic fields. The magnitudes of E and B continuously oscillate

between positive and negative. These oscillating fields create an oscillating elec-
tromagnetic force. A charged particle will interact with the electromagnetic force
and will oscillate back and forth with a constantly changing velocity. The chang-
ing velocity gives the particle a changing kinetic energy that is proportional to the
square of the velocity (that is, ). Consequently the energy of a wave
depends not on the values of E and B alone, but on the sum of their squares, that
is, on The energy is also related to the intensity of a wave, a quantity
which, in turn, is related to the square of the wave amplitude.

Suppose we let the amplitude of the Then for each wave, whether a
pair of waves is in phase or out of phase, the energy is proportional to 
The average energy of the pair of waves is also proportional to two [that is,

]. In constructive interference, the amplitudes become two, so that the
energy is proportional to four. In destructive interference, the amplitude is zero
and the energy is zero. Note, however, that the average between the two situations
is still two [that is, ] so that energy is conserved, as it must be.14 + 02>2

12 + 22>2

12
+ 12

= 2.
waves = 1.

1I2E
2
+ B

2.

u
2

m
1
2 ek =

1B21E2

Diffraction is a phenomenon that can be explained only as a property of
waves. Both the physical picture and mathematics of interference and diffrac-
tion are the same for water waves and electromagnetic waves.

The Visible Spectrum
The speed of light is lower in any medium than it is in a vacuum. Also, the
speed is different in different media. As a consequence, light is refracted, or
bent, when it passes from one medium to another (Fig. 8-6). Moreover, although
electromagnetic waves all have the same speed in a vacuum, waves of different
wavelengths have slightly different speeds in air and other media. Thus, when a
beam of white light is passed through a transparent medium, the wavelength
components are refracted differently. The light is dispersed into a band of colors,
a spectrum. In Figure 8-7(a), a beam of white light (for example, sunlight) is dis-
persed by a glass prism into a continuous band of colors corresponding to all
the wavelength components from red to violet. This is the visible spectrum
shown in Figure 8-3 and also seen in a rainbow, where the medium that
disperses the sunlight is droplets of water (Fig. 8-7b).

8-1 CONCEPT ASSESSMENT

Red laser light is passed through a device called a frequency doubler. What is
the approximate color of the light that exits the frequency doubler? How are
the wavelengths of the original light and the frequency-doubled light related?

 FIGURE 8-6
Refraction of light
Light is refracted (bent) as 
it passes from air into the 
glass prism, and again as it
emerges from the prism into
air. This photograph shows
that red light is refracted the
least and blue light the most.
The blue light strikes the
prism at such an angle that
the beam undergoes an
internal reflection before it
emerges from the prism.
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300 Chapter 8 Electrons in Atoms

The importance of light to
chemistry is that light is a form
of energy and that by studying
light matter interactions we
can detect energy changes in
atoms and molecules. Another
means of monitoring the
energy of a system is through
observations of heat transfer.
Light can be more closely
controlled and thus gives us
more detailed information
than can be obtained with 
heat measurements.

(b)(a)

 FIGURE 8-7
The spectrum of white  light
(a) Dispersion of light through a prism. Red light is refracted the least and violet light
the most when white  light is passed through a glass prism. The other colors of the
visible spectrum are found between red and violet. (b) Rainbow near a waterfall.
Here, water droplets are the dispersion medium.

8-2 Atomic Spectra
The visible spectrum in Figure 8-7 is said to be a continuous spectrum because the
light being diffracted consists of many wavelength components. If the source of
a spectrum produces light having only a relatively small number of wavelength
components, then a discontinuous spectrum is observed. For example, if the light
source is an electric discharge passing through a gas, only certain colors are seen
in the spectrum (Fig. 8-8a and b). Or, if the light source is a gas flame into which
an ionic compound has been introduced, the flame may acquire a distinctive
color indicative of the metal ion present (Fig. 8-8c e). In each of these cases, the
emitted light produces a spectrum consisting of only a limited number of dis-
crete wavelength components, observed as colored lines with dark spaces
between them. These discontinuous spectra are called atomic, or line, spectra.

The production of the line spectrum of helium is illustrated in Figure 8-9.
The light source is a lamp containing helium gas at a low pressure. When an
electric discharge is passed through the lamp, helium atoms absorb energy,
which they then emit as light. The light is passed through a narrow slit and
then dispersed by a prism. The colored components of the light are detected
and recorded on photographic film. Each wavelength component appears as

 FIGURE 8-8
Sources for light emission
Light emitted by an electric discharge through (a) hydrogen gas and (b) neon gas. Light
emitted when compounds of the alkali metals are excited in the gas flames: (c) lithium,
(d) sodium, and (e) potassium.

(a) (c) (d)(b) (e)
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Helium 

lamp

Slit Prism

Photographic film

an image of the slit a thin line. In all, there are five lines in the spectrum of
helium that can be seen with the unaided eye.

Each element has its own distinctive line spectrum a kind of atomic finger-
print. Robert Bunsen (1811 1899) and Gustav Kirchhoff (1824 1887) developed
the first spectroscope and used it to identify elements. In 1860, they discovered a
new element and named it cesium (Latin, caesius, sky blue) because of the distinc-
tive blue lines in its spectrum. They discovered rubidium in 1861 in a similar way
(Latin, rubidius, deepest red). Still another element characterized by its unique
spectrum is helium (Greek, helios, the sun). Its spectrum was observed during the
solar eclipse of 1868, but helium was not isolated on Earth for another 27 years.

Among the most extensively studied atomic spectra has been the hydrogen
spectrum. Light from a hydrogen lamp appears to the eye as a reddish purple
color (Fig. 8-8a). The principal wavelength component of this light is red light of
wavelength 656.3 nm. Three other lines appear in the visible spectrum of atomic
hydrogen, however: a greenish blue line at 486.1 nm, a violet line at 434.0 nm,
and another violet line at 410.1 nm. The visible atomic spectrum of hydrogen is
shown in Figure 8-10. In 1885, Johann Balmer, apparently through trial and
error, deduced a formula for the wavelengths of these spectral lines. Balmer s
equation, rearranged to a form based on frequency, is

(8.2)

In this equation, is the frequency of the spectral line, and n must be an integer
(whole number) greater than two. If is substituted into the equation, then = 3

n

n = 3.2881 * 1015
 s-1

a
1

22
-

1

n
2
b

Bunsen designed a 
special gas burner for his
spectroscopic studies. This
burner, the common
laboratory Bunsen burner,
produces very little
background radiation to
interfere with spectral
observations.

 FIGURE 8-10
The Balmer series for hydrogen atoms a line spectrum
The four lines shown are the only ones visible to the unaided eye. Additional, closely
spaced lines lie in the ultraviolet (UV) region.
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FIGURE 8-9
The atomic, or line, spectrum of helium
The apparatus pictured here, in which the spectral lines
are photographed, is called a spectrograph. If the
observations are made by visual sighting alone, the
device is called a spectroscope. If the positions and
brightness of the lines are measured and recorded by
other than visual or photographic means, the term
generally used is spectrometer.
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302 Chapter 8 Electrons in Atoms

frequency of the red line is obtained. If is used in equation 8.2, the
frequency of the greenish blue line is obtained, and so on.

The fact that atomic spectra consist of only limited numbers of well-defined
wavelength lines provides a great opportunity to learn about the structures of
atoms. For example, it suggests that only a limited number of energy values are
available to excited gaseous atoms. Classical (nineteenth-century) physics, how-
ever, was not able to provide an explanation of atomic spectra. The key to this
puzzle lay in a great breakthrough of modern science the quantum theory.

n = 4

 FIGURE 8-11
Spectrum of radiation
given off by a heated
body
A red-hot object has a
spectrum that peaks around
675 nm, whereas a white-hot
object has a spectrum that
has comparable intensities
for all wavelengths in the
visible region. The sun has a
blackbody temperature of
about 5750 K. Objects emit
radiation at all temperatures,
not just at high temperatures.
For example, night-vision
goggles makes infrared
radiation emitted by objects
visible in the dark.
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 Light emission by molten
iron.

8-2 CONCEPT ASSESSMENT

When comet Schumacher-Levy crashed into Jupiter s surface, scientists viewed
the event with spectrographs. What did they hope to discover?

8-3 Quantum Theory
We are aware that hot objects emit light of different colors, from the dull red of
an electric-stove heating element to the bright white of a light bulb filament.
Light emitted by a hot radiating object can be dispersed by a prism to produce a
continuous color spectrum. As seen in Figure 8-11, the light intensity varies
smoothly with wavelength, peaking at a wavelength fixed by the source temper-
ature. As with atomic spectra, classical physics could not provide a complete
explanation of light emission by heated solids, a process known as blackbody radi-
ation. Classical theory predicts that the intensity of the radiation emitted would
increase indefinitely, as indicated by the dashed lines in Figure 8-11. In 1900, to
explain the fact that the intensity does not increase indefinitely, Max Planck
(1858 1947) made a revolutionary proposal: Energy, like matter, is discontinuous.
Here, then, is the essential difference between the classical physics of Planck s
time and the new quantum theory that he proposed: Classical physics places no
limitations on the amount of energy a system may possess, whereas quantum
theory limits this energy to a discrete set of specific values. The difference
between any two allowed energies of a system also has a specific value, called a
quantum of energy. This means that when the energy increases from one
allowed value to another, it increases by a tiny jump, or quantum. Here is a way
of thinking about a quantum of energy: It bears a similar relationship to the total
energy of a system as a single atom does to an entire sample of matter.

The model Planck used for the emission of electromagnetic radiation was
that of a group of atoms on the surface of the heated object oscillating together
with the same frequency. Planck s assumption was that the group of atoms,
the oscillator, must have an energy corresponding to the equation

where is the energy, n is a positive integer, is the oscillator frequency, and
h is a constant that had to be determined by experiment. By using his theory
and experimental data for the distribution of frequencies with temperature,
Planck established the following value for the constant h. We now call it
Planck s constant, and it has the value

Planck s postulate can be rephrased in this more general way: The energy of a
quantum of electromagnetic radiation is proportional to the frequency of the
radiation the higher the frequency, the greater the energy. This is summa-
rized by what we now call Planck s equation.

h = 6.62607 * 10-34
 J s

n,

, = nhn

(8.3)E = hn

Planck s equation can be
used to develop relationships
among frequency, wave-
length, and energy. By using
this information, the relative
energies of radiation on the
electromagnetic spectrum can
be compared.
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 Max Planck (1858 1947)

8-2 ARE YOU WONDERING...

How Planck s ideas account for the fact that the intensity
of blackbody radiation drops off at higher frequencies?

Planck was aware of the work of Ludwig Boltzmann, who, with James Maxwell,
had derived an equation to account for the distribution of molecular speeds.
Boltzmann had shown that the relative chance of finding a molecule with a par-
ticular speed was related to its energy by the following expression.

where is the Boltzmann constant, and T is the Kelvin temperature. You will also
notice that the curve of intensity versus wavelength in Figure 8-11 bears a strong
resemblance to the distribution of molecular speeds in Figure 6-15. Planck
assumed that the energies of the substance oscillating to emit blackbody radiation
were distributed according to the Boltzmann distribution law. That is, the relative
chance of an oscillator having the energy is proportional to where n
is an integer, 1, 2, 3, and so on. So this expression shows that the chance of an
oscillator having a high frequency is lower than for oscillators having lower fre-
quencies because as n increases, decreases. The assumption that the
energy of the oscillators in the light-emitting source cannot have continuous val-
ues leads to excellent agreement between theory and experiment.

e
-nhn/kBT,

e
-nhn/kBT,nhn

kB

relative chance r e
A-

 

kinetic energy

k
B
T B

At the time Planck made his quantum hypothesis, scientists had had no 
previous experience with macroscopic physical systems that required the
existence of separate energy levels and that energy may only be emitted or
absorbed in specific quanta. Their experience was that there were no theoreti-
cal limits on the energy of a system and that the transfer of energy was contin-
uous. Thus it is not surprising that scientists, including Planck himself, were
initially skeptical of the quantum hypothesis. It had been designed to explain
radiation from heated bodies and certainly could not be accepted as a general
principle until it had been tested on other applications.

Only after the quantum hypothesis was successfully applied to phenomena
other than blackbody radiation did it acquire status as a great new scientific
theory. The first of these successes came in 1905 with Albert Einstein s quan-
tum explanation of the photoelectric effect.

The Photoelectric Effect
In 1888, Heinrich Hertz discovered that when light strikes the surface of cer-
tain metals, electrons are ejected. This phenomenon is called the photoelectric
effect and its salient feature is that electron emission only occurs when the fre-
quency of the incident light exceeds a particular threshold value When
this condition is met,

the number of electrons emitted depends on the intensity of the incident
light, but

the kinetic energies of the emitted electrons depend on the frequency of
the light.

These observations, especially the dependency on frequency, could not be
explained by classical wave theory. However, Albert Einstein showed that
they are exactly what would be expected with a particle interpretation of radi-
ation. In 1905, Einstein proposed that electromagnetic radiation has particle-
like qualities and that particles  of light, subsequently called photons by 
G. N. Lewis, have a characteristic energy given by Planck s equation, 

In the particle model, a photon of energy strikes a bound electron, which
absorbs the photon energy. If the photon energy, is greater than the energyhn,

hn

E = hn.

1n02.

Light matter interactions
usually involve one photon per
atom or electron. Thus, to
escape from a photoelectric
surface, an electron must do so
with the energy from a single
photon collision. The electron
cannot accumulate the energy
from several hits by photons.
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304 Chapter 8 Electrons in Atoms

binding the electron to the surface (a quantity known as the work function), a
photoelectron is liberated. Thus, the lowest frequency light producing the
photoelectric effect is the threshold frequency, and any energy in excess of the
work function appears as kinetic energy in the emitted photoelectrons.

In the discussion that follows, based on the experimental setup shown in
Figure 8-12, we will see how the threshold frequency and work function are
evaluated. Also, we will see that the photoelectric effect provides an indepen-
dent evaluation of Planck s constant, h.

In Figure 8-12, light (designated ) is allowed to shine on a piece of metal in
an evacuated chamber. The electrons emitted by the metal (photoelectrons)
travel to the upper plate and complete an electric circuit set up to measure the
photoelectric current through an ammeter. Figure 8-12(b) illustrates the variation
of the photoelectric current, detected by the ammeter as the frequency and
intensity of the incident light is increased. We see that no matter how intense the
light, no current flows if the frequency is below the threshold frequency, and
no photoelectric current is produced. In addition no matter how weak the light,
there is a photoelectric current if The magnitude of the photoelectric cur-
rent is, as shown in Figure 8-12(b), directly proportional to the intensity of the
light, so that the number of photoelectrons increases with the intensity of the inci-
dent light. Therefore, we can associate light intensity with the number of photons
arriving at a point per unit time.

A second circuit is set up to measure the velocity of the photoelectrons, and
hence their kinetic energy. In this circuit, a potential difference (voltage) is main-
tained between the photoelectric metal and an open-grid electrode placed below
the upper plate. For electric current to flow, electrons must pass through the
openings in the grid and onto the upper plate. The negative potential on the grid
acts to slow down the approaching electrons. As the potential difference between
the grid and the emitting metal is increased, a point is reached at which the pho-
toelectrons are stopped at the grid and the current ceases to flow through the
ammeter. The potential difference at this point is called the stopping voltage, At
the stopping voltage, the kinetic energy of the photoelectrons has been converted

Vs.

n 7 n0.

n0,

1n2Ip,

hn

 FIGURE 8-12
The photoelectric effect

(a) Schematic diagram of the apparatus for photoelectric effect measurements.
(b) The photoelectric current, appears only if the frequency is greater
than the threshold value For the current increases as the
intensity of the light is increased. (c) Stopping voltage of photoelectrons as a
function of frequency of incident radiation. The stopping voltage is plotted
against the frequency of the incident radiation. The threshold frequency of
the metal is found by extrapolation.
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With the advent of lasers
we have observed the
simultaneous absorption of
two photons by one electron.
Instances of two adjacent
molecules cooperatively
absorbing one photon are
also known. Such occurrences
are exceptions to the more
normal one photon/one
electron phenomena.
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 Albert Einstein
(1879 1955)

to potential energy, expressed through the following equation (in which 
and are the mass, speed, and charge of an electron, respectively).

As a result of experiments of the type just described, we find that is pro-
portional to the frequency of the incident light but independent of the light
intensity. Also, as shown in Figure 8-12, if the frequency, is below the threshold
frequency, no photoelectric current is produced. At frequencies greater than

the empirical equation for the stopping voltage is

The constant k is independent of the metal used, but varies from one metal
to another. Although there is no relation between and the light intensity, theVs

n0

Vs = k1n - n02

n0,
n0,

n,

Vs

1

2
 mu2

= eVs

e
m, u,

8-3 ARE YOU WONDERING...

How the energy of a photon is manifested?

We begin with an important relationship between the mass and velocity of a particle
given by Einstein. Let the mass of a particle when the particle and the measuring
device are at rest be denoted as If we remeasure the mass when the particle
moves with a velocity u, we find that its mass increases according to the equation

where m is the particle mass, referred to as the relativistic mass, and c is the speed
of light. For particles moving at speeds less than 90% of the speed of light, the rel-
ativistic mass is essentially the same as the rest mass 

We have seen that the kinetic energy of a particle is given by

However, because photons travel at the speed of light they must have zero rest mass
(otherwise their relativistic mass m would become infinite). So where is their energy?

Although photons have zero rest mass, they do possess momentum, which is
defined as the relativistic mass times the velocity of the particle, because they are
in motion. Einstein s theory of special relativity states that a particle s energy and
momentum ( recall page 217) are related by the expression

where is the rest mass of the particle. For photons traveling at the speed of
light c, the rest mass is zero. Hence

Photons possess momentum, and it is this momentum that is transferred to an
electron in a collision. In all collisions between photons and electrons, momentum
is conserved. Thus, we see that the wave and the photon models are intimately
connected. The energy of a photon is related to the frequency of the wave by
Planck s equation, and the momentum of the photon is related to the wavelength
of the wave by the equation just derived! When a photon collides with an electron,
it transfers momentum to the electron, which accelerates to a new velocity. The
energy of the photon decreases, and, as a consequence, its wavelength increases.
This phenomenon, called the Compton effect, was discovered in 1923 and con-
firmed the particulate nature of light.

 p =
hn

c
=

h

l

 E = pc = hn

m0

E2
= 1pc22

+ 1m0c
2
2

2

p = mu,

EK =
1

2
 mu2

1m02.1m2

m =
m0

21 - u2
>c2

m0.

Albert Einstein received a
Nobel Prize for his work on
the photoelectric effect. He 
is better known for his
development of the theory 
of relativity, and E = mc2.

M08_PETR4521_10_SE_C08.QXD  1/16/10  3:04 AM  Page 305



306 Chapter 8 Electrons in Atoms

photoelectric current, is proportional to the intensity of the light as illus-
trated in Figure 8-12b.

The work function is a quantity of work and, hence, of energy. One way to
express this quantity is as the product of Planck s constant and the threshold fre-
quency: Another way is as the product of the charge on the electron, e,
and the potential, that has to be overcome in the metal: Thus, the
threshold frequency for the photoelectric effect is given by the expression

Since the work function is a characteristic of the metal used in the experi-
ment, then is also a characteristic of the metal, as confirmed by experiment.n0

1eV02

n0 =
eV0

h

E = eV0.V0,
E = hn0.

Ip,

When a photon of energy strikes an electron, the electron overcomes the

work function and is liberated with kinetic energy Thus, by the

law of conservation of energy, we have

which gives

which is identical to the empirically determined equation for with 
when Careful experiments showed that the constant h had the same
value as determined by Planck for blackbody radiation. The additional fact that
the number of photoelectrons increases with the intensity of light indicates that
we should associate light intensity with the number of photons arriving at a
point per unit time.

hn0 = eV0.
k = h>eVs

eVs =
1

2
 mu2

= hn - eV0

1

2
 mu2

+ eV0 = hn
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1
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b  mu2.eV0
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8-3 CONCEPT ASSESSMENT

The wavelength of light needed to eject electrons from hydrogen atoms is 
91.2 nm. When light of 80.0 nm is shone on a sample of hydrogen atoms,
electrons are emitted from the hydrogen gas. If, in a different experiment, the
wavelength of the light is changed to 70.0 nm, what is the effect compared to
the use of 80.0 nm light? Are more electrons emitted? If not, what happens?

Photons of Light and Chemical Reactions
Chemical reactions that are induced by light are called photochemical reactions.
Because they are essential to these reactions, we can think of photons as reac-
tants  and we can designate them in chemical equations by the symbol The
reactions by which ozone molecules, are produced from oxygen mole-
cules, are represented below.

The radiation required in the first reaction is UV radiation with wavelength
less than 242.4 nm. O atoms from the first reaction then combine with to
form In the second reaction, a third body,  M, such as is needed to
carry away excess energy to prevent immediate dissociation of molecules.

Photochemical reactions involving ozone are the subject of Example 8-2.
There we see that the product of Planck s constant and frequency yields
the energy of a single photon of electromagnetic radiation in the unit joule.
Invariably, this energy is only a tiny fraction of a joule. Often it is useful to deal
with the much larger energy of a mole of photons ( photons).6.02214 * 1023

1n2h

O3

N21g2,O3.
O2

 O2 + O + M ¡ O3 + M*

 O2 + hn ¡ O + O

O2,
O3,

hn.

The reactions shown here
describing the formation
ozone from oxygen gas are
the reactions that occur in the
atmosphere to produce ozone.

*
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EXAMPLE 8-2 Using Planck s Equation to Calculate the Energy of Photons of Light

For radiation of wavelength 242.4 nm, the longest wavelength that will bring about the photodissociation of
what is the energy of (a) one photon, and (b) a mole of photons of this light?

Analyze
To use Planck s equation, we need the frequency of the radiation. We can get this from equation (8.1) after first
expressing the wavelength in meters. Planck s equation is written for one photon of light. We emphasize this
by including the unit in the value of h. Once we have the energy per photon, we can multiply it by the
Avogadro constant to convert to a per-mole basis.

Solve
(a) First, calculate the frequency of the radiation.

Then, calculate the energy of a single photon.

(b) Calculate the energy of a mole of photons.

Assess
We can see from this example that when the energy of a single photon is expressed in SI units, the energy is
rather small and perhaps difficult to interpret. However, the amount of energy carried by a mole of photons is
something we can easily relate to. As shown above, light with a wavelength of 242.4 nm has an energy content
of 493.6 kJ/mol, which is similar in magnitude to the internal energy and enthalpy changes of chemical reac-
tions (see Chapter 7).

PRACTICE EXAMPLE A: The protective action of ozone in the atmosphere comes through ozone s absorption of
UV radiation in the 230 to 290 nm wavelength range. What is the energy, in kilojoules per mole, associated
with radiation in this wavelength range?

PRACTICE EXAMPLE B: Chlorophyll absorbs light at energies of and 
To what color and frequency do these absorptions correspond?

4.414 * 10-19 J>photon3.056 * 10-19 J>photon

 = 4.936 * 105
 J>mol

 E = 8.196 * 10-19
 J>photon * 6.022 * 1023 photons>mol

 = 8.196 * 10-19
 J>photon

 E = hn = 6.626 * 10-34
*

J s

photon
* 1.237 * 1015

 s-1

 n =
c

l
=

2.998 * 108 m s-1

242.4 * 10-9 m
= 1.237 * 1015

 s-1

O2,

8-4 The Bohr Atom
The Rutherford model of a nuclear atom (Section 2-3) does not indicate how
electrons are arranged outside the nucleus of an atom. According to classical
physics, stationary, negatively charged electrons would be pulled into the pos-
itively charged nucleus. This suggests that the electrons in an atom must be in
motion, like the planets orbiting the sun. However, again according to classical
physics, orbiting electrons should be constantly accelerating and should radi-
ate energy. By losing energy, the electrons would be drawn ever closer to the
nucleus and soon spiral into it. In 1913, Niels Bohr (1885 1962) resolved this
problem by using Planck s quantum hypothesis. In an interesting blend of clas-
sical and quantum theory, Bohr postulated that for a hydrogen atom:

1. The electron moves in circular orbits about the nucleus with the motion
described by classical physics.

2. The electron has only a fixed set of allowed orbits, called stationary states. The
allowed orbits are those in which certain properties of the electron have unique
values. Even though classical theory would predict otherwise, as long as an elec-
tron remains in a given orbit, its energy is constant and no energy is emitted. The par-
ticular property of the electron having only certain allowed values, leading to
only a discrete set of allowed orbits, is called the angular momentum. Its possible

 Niels Bohr (1885 1962)

In addition to his work on the
hydrogen atom, Bohr headed
the Institute of Theoretical
Physics in Copenhagen, 
which became a mecca for
theoretical physicists in the
1920s and 1930s.
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Notice the resemblance of
this equation to the Balmer
equation (8.2). In addition to
developing a theory of atomic
structure to account for
Rutherford s atomic model,
Bohr sought a theoretical
explanation of the Balmer
equation.

*

values are where n must be an integer. Thus the quantum numbers
progress: for the first orbit; for the second orbit; and so on.

3. An electron can pass only from one allowed orbit to another. In such tran-
sitions, fixed discrete quantities of energy (quanta) are involved either
absorbed or emitted.

The atomic model of hydrogen based on these ideas is pictured in Figure 8-13.
The allowed states for the electron are numbered, and so
on. These integral numbers, which arise from Bohr s assumption that only
certain values are allowed for the angular momentum of the electron, are called
quantum numbers.

The Bohr theory predicts the radii of the allowed orbits in a hydrogen atom.

(8.4)

The theory also allows us to calculate the electron velocities in these orbits
and, most important, the energy. When the electron is free of the nucleus, by
convention, it is said to be at a zero of energy. When a free electron is attracted
to the nucleus and confined to the orbit n, the electron energy becomes nega-
tive, with its value lowered to

rn = n2
 a0 , where n = 1, 2, 3, Á  and a0 = 53 pm 10.53 Å2

n = 1, n = 2, n = 3,

n = 2n = 1
nh>2p,

FIGURE 8-13
Bohr model of the hydrogen atom
A portion of the hydrogen atom is pictured. The nucleus is at the
center, and the electron is found in one of the discrete orbits,

and so on. Excitation of the atom raises the electron to
higher-numbered orbits, as shown with black arrows. Light is
emitted when the electron falls to a lower-numbered orbit. Two
transitions that produce lines in the Balmer series of the hydrogen
spectrum are shown in the approximate colors of the spectral lines.

n = 1, 2,

*

n * 1
r * a0

n * 2 
r * 4a0

n * 3 
r * 9a0

n * 4 
r * 16a0

Electron

excitation

Light

emission

KEEP IN MIND

that momentum is the
product of the mass and the
velocity of a particle. If the
particle undergoes a circular
motion, then the particle
possesses angular
momentum.

1p2

(8.5)En =
-RH

n2

is a numerical constant with a value of 
With expression (8.5), we can calculate the energies of the allowed energy

states, or energy levels, of the hydrogen atom. These levels can be represented
schematically as in Figure 8-14. This representation is called an energy-level
diagram. Example 8-3 shows how Bohr s model can be used to predict whether
certain energy levels are possible (allowed) or impossible (not allowed).

2.179 * 10-18 J.RH

According to the Bohr
model, lower energy orbits
are closer to the nucleus and
electrons associated with low
energy orbits must absorb
more energy to be removed
from the atom.

*

Normally, the electron in a hydrogen atom is found in the orbit closest to
the nucleus This is the lowest allowed energy, or the ground state.
When the electron gains a quantum of energy, it moves to a higher level
( and so on) and the atom is in an excited state. When the electron
drops from a higher to a lower numbered orbit, a unique quantity of energy is
emitted the difference in energy between the two levels. Equation (8.5) can
be used to derive an expression for the difference in energy between two lev-
els, where is the final level and is the initial one.

(8.6)

The energy of the photon, either absorbed or emitted, is equal to the mag-
nitude of this energy difference. Because and we
can write

¢E = Ephoton = hn

Ephoton = ¢E ,Ephoton = hn

Ephoton,

¢E = Ef - Ei =
-RH

nf
2 -

-RH

ni
2 = RHa

1

ni
2 -

1

nf
2 b = 2.179 * 10-18 Ja

1

ni
2 -

1

nf
2 b

ninf

n = 2, 3,

1n = 12.

Think of a person on a
stairway going up steps
(excitation) or down steps
(emission). The person must
stop on a step in-between
levels are not available.

*
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EXAMPLE 8-3 Understanding the Meaning of Quantization of Energy

Is it likely that there is an energy level for the hydrogen atom, 

Analyze
Rearrange equation (8.5) for and solve for n. If the value of n is an integer, then the given energy corresponds
to an energy level for the hydrogen atom.

Solve
Let us rearrange equation (8.5), solve for and then for n.

Because the value of n is not an integer, this is not an allowed energy level for the hydrogen atom.

Assess
Equation (8.5) places a severe restriction on the energies allowed for a hydrogen atom.

PRACTICE EXAMPLE A: Is there an energy level for the hydrogen atom, 

PRACTICE EXAMPLE B: The energy of an electron in a hydrogen atom is What level does it occupy?-4.45 * 10-20
 J.

En = 2.69 * 10-20
 J?

 n = 2217.9 = 14.76

 =
-2.179 * 10-18 J

-1.00 * 10-20
 J
= 2.179 * 102 = 217.9

 n2 =
-RH

En

n
2,

n
2

En = -1.00 * 10-20 J?

FIGURE 8-14
Energy-level diagram for 
the hydrogen atom
If the electron acquires

of energy, it
moves to the orbit 
ionization of the H atom occurs
(black arrow). Energy emitted
when the electron falls from
higher-numbered orbits to the
orbit is in the form of
ultraviolet light, which produces
a spectral series called the
Lyman series (gray lines).
Electron transitions to the orbit

yield lines in the Balmer
series (recall Figure 8-10); three
of the lines are shown here (in
color). Transitions to yield
spectral lines in the infrared.

n = 3

n = 2

n = 1

n = q ;
2.179 * 10-18 J

*

E
n

er
g

y

Ionization

Balmer

series

Lyman

series
n + 1 E1 + *RH/12 

+ *2.179 , 10*18 J

E2 + *RH/22 
+ *5.45 , 10*19 J

E3 + *RH/32 
+ *2.42 , 10*19 J

E4 + *RH/42 
+ *1.36 , 10*19 J

E5 + *RH/52 
+ *8.72 , 10*20 J

E
-

 + 0

n + 2

n + 3

n + 4

n + 5

n + -

where represents the magnitude of the energy difference between
the energy levels involved in the electronic transition.

Example 8-4 uses equation (8.6) as a basis for calculating the lines in
the hydrogen emission spectrum. Because the differences between
energy levels are limited in number, so too are the energies of the emitted
photons. Therefore, only certain wavelengths (or frequencies) are
observed for the spectral lines.

¢E
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310 Chapter 8 Electrons in Atoms

EXAMPLE 8-4 Calculating the Wavelength of a Line in the Hydrogen Spectrum

Determine the wavelength of the line in the Balmer series of hydrogen corresponding to the transition from
to 

Analyze
This problem is an application of equation (8.6). After the energy difference is calculated, we can obtain the
photon frequency by rearranging Equation (8.1) is then used to get the wavelength.

Solve
The specific data for equation (8.6) are and 

Rearranging gives the frequency

Rearranging for the wavelength gives the following result:

Assess
Note the good agreement between this result and the data in Figure 8-10. The color of the spectral line is deter-
mined by the energy difference, while the intensity is determined by the number of hydrogen atoms
undergoing this transition. The greater the number of atoms undergoing the same transition, the greater the
number of emitted photons, resulting in greater intensity.

PRACTICE EXAMPLE A: Determine the wavelength of light absorbed in an electron transition from to
in a hydrogen atom.

PRACTICE EXAMPLE B: Refer to Figure 8-14 and determine which transition produces the longest wavelength
line in the Lyman series of the hydrogen spectrum. What is the wavelength of this line in nanometers and in
angstroms?

n = 4
n = 2

¢E,

l =
c

n
=

2.998 * 108
 m s-1

6.906 * 1014
 s-1

= 4.341 * 10-7
 m = 434.1 nm

c = ln

n =
Ephoton

h
=

4.576 * 10-19
 J photon-1

6.626 * 10-34
 J s photon-1

= 6.906 * 1014
 s-1

Ephoton = ¢E = hn

 = -4.576 * 10-19
 J

 = 2.179 * 10-18 * 10.04000 - 0.250002

 ¢E = 2.179 * 10-18
 Ja

1

52
-

1

22
b

nf = 2.ni = 5

¢E = Ephoton = hn.

n = 2.n = 5

The Bohr Theory and Spectroscopy
As shown in Example 8-4, the Bohr theory provides a model for understand-
ing the emission spectra of atoms. Emission spectra are obtained when the
individual atoms in a collection of atoms (roughly of them) are excited to
the various possible excited states of the atom. The atoms then relax to states
of lower energy by emitting photons of frequency given by

(8.7)

Thus, the quantization of the energy states of atoms leads to line spectra.
Earlier in this chapter, we learned how the emission spectrum of a sample

can be measured by dispersing emitted light through a prism and determining
the wavelengths of the individual components of that light. We can conceive
of an alternate technique in which we pass electromagnetic radiation, such as
white light, through a sample of atoms in their ground states and then pass the
emerging light through a prism. Now we observe which frequencies of light
the atoms absorb. This form of spectroscopy is called absorption spectroscopy.
The two types of spectroscopy emission and absorption are illustrated in
Figure 8-15.

nphoton =
Ei - Ef

h

1020
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Prism

Ei ni

Ef nf

DetectorExcitation of sample

Wavelength

(a)

Prism

Ef nf

Ei ni

Detector

Sample

White light

source

Wavelength

(b)

FIGURE 8-15
Emission and absorption
spectroscopy
(a) Emission spectroscopy. Bright
lines are observed on a dark
background of the photographic
plate. (b) Absorption spectroscopy.
Dark lines are observed on a bright
background on the photographic
plate.

*

For absorption of a photon to take place, the energy of the photon must
exactly match the energy difference between the final and initial states, that is,

(8.8)

Note that the farther apart the energy levels, the shorter the wavelength of the
photon needed to induce a transition.

You may have also noticed that in equation (8.7) the energy difference is
expressed as whereas in equation (8.8) it is This is done to sig-
nify that energy is conserved during photon absorption and emission. That is,
during emission so that During photon absorp-
tion, so that 

Spectroscopic techniques have been used extensively in the study of molec-
ular structures. Other forms of spectroscopy available to chemists are
described elsewhere in the text.

Emission spectra are generally more complicated than absorption spectra. An
excited sample will contain atoms in a variety of states, each being able to drop
down to any of several lower states. An absorbing sample generally is cool and
transitions are possible only from the ground state. The hydrogen Balmer lines
are not seen, for example, in absorption from cold hydrogen atoms.

The Bohr Theory and the Ionization Energy of Hydrogen
The Bohr model of the atom helps to clarify the mechanism of formation of
cations. In the special case where the energy of a photon interacting with a
hydrogen atom is just enough to remove an electron from the ground state

n = 1Ef - Ei2>h.Ef = Ei + hn,
n = 1Ei - Ef2>h.Ef = Ei - hn,

Ef - Ei.Ei - Ef,

n =
Ef - Ei

h
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312 Chapter 8 Electrons in Atoms

the electron is freed, the atom is ionized, and the energy of the free
electron is zero.

The quantity is called the ionization energy of the hydrogen atom. If 
and are substituted in the Bohr expression for an electron initially in
the ground state of an H atom, then

The ideas just developed about the ionization of atoms are applied in
Example 8-5, where they are coupled with another aspect of the Bohr model:
The model also works for hydrogen-like species, such as the ions and

which have only one electron. For these species, the nuclear charge
(atomic number) appears in the energy-level expression. That is,

(8.9)En =
-Z

2
RH

n
2

Li2+,
He+

hnphoton = Ei = -E1 =
RH

12
= RH

nf = q

ni = 1Ei

hnphoton = Ei = -E1

1n = 12,

EXAMPLE 8-5 Using the Bohr Model

Determine the kinetic energy of the electron ionized from a ion in its ground state, using a photon of
frequency 

Analyze
When a photon of a given energy ionizes a species, any excess energy is transferred as kinetic energy to the
electron; that is, The energy of the electron in the ion is calculated by using 
equation (8.9), and the energy of the photon is calculated by using Planck s relationship. The difference is the
kinetic energy of the electron.

Solve

The energy of a photon of frequency is

The kinetic energy of the electron is given by that is,

Assess
Notice the similarity between the energy conservation expression used in solving this problem (Ephoton = 
IE + KEelectron) and the one used in explaining the photoelectric effect (Ephoton = eV + KEelectron).

PRACTICE EXAMPLE A: Determine the wavelength of light emitted in an electron transition from to 
in a ion.

PRACTICE EXAMPLE B: The frequency of the to transition for an unknown hydrogen-like ion occurs
at a frequency 16 times that of the hydrogen atom. What is the identity of the ion?

n = 2n = 3

Be3+
n = 3n = 5

0

kinetic energy = 3.313 * 10-17 J - 1.961 * 10-17 J = 1.352 * 10-17 J

KEelectron = Ephoton - IE;

E = hn = 6.626 * 10-34
*

J s

photon
* 5.000 * 1016

 s-1
= 3.313 * 10-17

 J photon-1

5.000 * 1016
 s-1

E1 =
-32

* 2.179 * 10-18
 J

12
= -1.961 * 10-17 J

Li2+
Ephoton = IE + KEelectron.

5.000 * 1016
 s-1.

Li2+

Inadequacies of the Bohr Model
Despite the accomplishments of the Bohr model for the hydrogen atom and
hydrogen-like ions, the Bohr theory has a number of weaknesses. From an
experimental point of view, the theory cannot explain the emission spectra of
atoms and ions with more than one electron, despite numerous attempts to do
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so. In addition, the theory cannot explain the effect of magnetic fields on emis-
sion spectra. From a fundamental standpoint, the Bohr theory is an uneasy
mixture of classical and nonclassical physics. Bohr understood at the time that
there is no fundamental basis for the postulate of quantized angular momen-
tum forcing an electron into a circular orbit. He made the postulate only so
that his theory would agree with experiment.

Modern quantum mechanics replaced the Bohr theory in 1926. The quanti-
zation of energy and angular momentum arose out of the postulates of this
new quantum theory and required no extra assumptions. Moreover, the circu-
lar orbits of the Bohr theory do not occur in quantum mechanics. In summary,
the Bohr theory gave the paradigm shift the quantum leap from classical
physics to the new quantum physics, and we must not underestimate its
importance as a scientific development.

8-4 CONCEPT ASSESSMENT

Which of the following electronic transitions in a hydrogen atom will lead to the
emission of a photon with the shortest wavelength, to to

to n = 2?n = 2, n = 3
n = 4n = 4,n = 1

8-5 Two Ideas Leading to a New Quantum
Mechanics

In the previous section, we examined some successes of the Bohr theory and
pointed out its inability to deal with multielectron atoms. A decade or so after
Bohr s work on hydrogen, two landmark ideas stimulated a new approach to
quantum mechanics. Those ideas are considered in this section and the new
quantum mechanics wave mechanics in the next.

Wave Particle Duality

To explain the photoelectric effect, Einstein suggested that light has particle-
like properties, which are displayed through photons. Other phenomena,
however, such as the dispersion of light into a spectrum by a prism, are best
understood in terms of the wave theory of light. Light, then, appears to have a
dual nature.

In 1924, Louis de Broglie, considering the nature of light and matter, offered
a startling proposition: Small particles of matter may at times display wave-like
properties. How did de Broglie come up with such a suggestion? He was aware
of Einstein s famous equation

where m is the relativistic mass of the photon and c is the speed of light. 
He combined this equation with the Planck relationship for the energy of a
photon as follows

where p is the momentum of the photon. Using we have

In order to use this equation for a material particle, such as an electron, de
Broglie substituted for the momentum, p, its equivalent the product of the

p =

h

l

nl = c,

 
hn

c
= mc = p

 hn = mc2

E = hn

E = mc2

8-5 Two Ideas Leading to a New Quantum Mechanics 313

 Louis de Broglie
(1892 1987)

De Broglie conceived of the
wave particle duality of small
particles while working on his
doctorate degree. He was
awarded the Nobel Prize in
physics 1929 for this work.
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314 Chapter 8 Electrons in Atoms

mass of the particle, m, and its velocity, u. When this is done, we arrive at de
Broglie s famous relationship.

KEEP IN MIND

that in equation (8.10),
wavelength is in meters, 
mass is in kilograms, and
velocity is in meters per
second. Planck s constant
must also be expressed in
units of mass, length, and
time. This requires replacing
the joule by the equivalent
units kg m2 s-2.

(a) (b)

FIGURE 8-16
Wave properties of electrons
demonstrated.
(a) Diffraction of X-rays by metal foil. 
(b) Diffraction of electrons by metal foil,
confirming the wave-like properties of
electrons.

*

The wavelength calculated in Example 8-6, 24.2 pm, is about one-half the
radius of the first Bohr orbit of a hydrogen atom. It is only when wavelengths
are comparable to atomic or nuclear dimensions that wave particle duality is
important. The concept has little meaning when applied to large (macro-
scopic) objects, such as baseballs and automobiles, because their wavelengths
are too small to measure. For these macroscopic objects, the laws of classical
physics are quite adequate.

The Uncertainty Principle
The laws of classical physics permit us to make precise predictions. For exam-
ple, we can calculate the exact point at which a rocket will land after it is fired.
The more precisely we measure the variables that affect the rocket s trajectory
(path), the more accurate our calculation (prediction) will be. In effect, there is
no limit to the accuracy we can achieve. In classical physics, nothing is left to
chance physical behavior can be predicted with certainty.

(8.10)l =

h

p
=

h

mu

De Broglie called the waves associated with material particles matter waves.
If matter waves exist for small particles, then beams of particles, such as elec-
trons, should exhibit the characteristic properties of waves, namely diffraction
(recall page 298). If the distance between the objects that the waves scatter from is
about the same as the wavelength of the radiation, diffraction occurs and an
interference pattern is observed. For example, X-rays are highly energetic pho-
tons with an associated wavelength of about 1 Å (100 pm). X-rays are scattered
by the regular array of atoms in the metal aluminum, where the atoms are about
2 Å (200 pm) apart, producing the diffraction pattern shown in Figure 8-16.

In 1927, C. J. Davisson and L. H. Germer of the United States showed that a
beam of slow electrons is diffracted by a crystal of nickel. In a similar experi-
ment in that same year, G. P. Thomson of Scotland directed a beam of electrons
at a thin metal foil. He obtained the same pattern for the diffraction of elec-
trons by aluminum foil as with X-rays of the same wavelength (Fig. 8-16).

Thomson and Davisson shared the 1937 Nobel Prize in physics for their elec-
tron diffraction experiments. George P. Thomson was the son of J.J. Thomson,
who had won the Nobel Prize in physics in 1906 for his discovery of the elec-
tron. It is interesting to note that Thomson the father showed that the electron
is a particle, and Thomson the son showed that the electron is a wave. Father
and son together demonstrated the wave particle duality of electrons.
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During the 1920s, Niels Bohr and Werner Heisenberg considered hypothet-
ical experiments to establish just how precisely the behavior of subatomic
particles can be determined. The two variables that must be measured are the
position of the particle and its momentum The conclusion they
reached is that there must always be uncertainties in measurement such that
the product of the uncertainty in position, and the uncertainty in momen-
tum, is

(8.11)

The significance of this expression, called the Heisenberg uncertainty princi-
ple, is that we cannot measure position and momentum with great precision
simultaneously. An experiment designed to locate the position of a particle with
great precision cannot also measure the momentum of the particle precisely, and
vice versa. In simpler terms, if we know precisely where a particle is, we cannot
also know precisely where it has come from or where it is going. If we know pre-
cisely how a particle is moving, we cannot also know precisely where it is. In the
subatomic world, things must always be fuzzy.  Why should this be so?

The de Broglie relationship (equation 8.10) implies that for a wavelength 
the momentum of the associated particle is precisely known. However, since the
wave itself is spread out over all space, we do not know exactly where the parti-
cle is! To get around this inability to locate the particle, we can combine several
waves of different wavelengths into a wave packet  to produce an interference
pattern that tends to localize the wave, as suggested in Figure 8-17. However,
because each wavelength in the wave packet corresponds to a specific, but dif-
ferent, momentum, the momentum of the particle corresponding to the collec-
tion of waves has become uncertain. So as we combine more and more waves to
localize the particle, the momentum becomes more and more uncertain. And,
conversely, the more precisely we want to know the momentum of a particle the
fewer and fewer wavelengths we should combine, meaning that the position

l,

¢x¢p Ú
h

4p

¢p,
¢x,

1p = mu2.1x2

EXAMPLE 8-6 Calculating the Wavelength Associated with a Beam of Particles

What is the wavelength associated with electrons traveling at one-tenth the speed of light?

Analyze
To calculate the wavelength, we use equation (8.10). To use it, we have to collect the electron mass, the electron
velocity, and Planck s constant, and then adjust the units so that they are expressed in terms of kg, m, and s.

Solve
The electron mass, expressed in kilograms, is (recall Table 2.1).
The electron velocity is 
Planck s constant 
Substituting these data into equation (8.10), we obtain

Assess
By converting the unit J to we are able to obtain the wavelength in meters.

PRACTICE EXAMPLE A: Assuming Superman has a mass of 91 kg, what is the wavelength associated with him if
he is traveling at one-fifth the speed of light?

PRACTICE EXAMPLE B: To what velocity (speed) must a beam of protons be accelerated to display a de Broglie
wavelength of 10.0 pm? Obtain the proton mass from Table 2.1.

kg m2
 s-2,

 = 2.42 * 10-11
 m = 24.2 pm

 l =
6.626 * 10-34

 kg m2
 s-1

19.109 * 10-31
 kg213.00 * 107

 m s-1
2

6.626 * 10-34
 kg m2

 s-1.6.626 * 10-34
 kg m2

 s-2
 s =h = 6.626 * 10-34

 J s =

u = 0.100 * c = 0.100 * 3.00 * 108 m s-1
= 3.00 * 107

 m s-1.
9.109 * 10-31

 kg

 Werner Heisenberg
(1901 1976)

In addition to his enunciation
of the uncertainty principle, for
which he won the Nobel Prize
in physics in 1932, Heisenberg
also developed a mathematical
description of the hydrogen
atom that gave the same results
as Schrödinger s equation
(page 323). Heisenberg (left) is
shown here dining with 
Niels Bohr.
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316 Chapter 8 Electrons in Atoms

 FIGURE 8-17
The uncertainty principle interpreted graphically
A collection of waves with varying wavelengths (left) can combine into a wave packet
(right). The superposition of the different wavelengths yields an average wavelength

and causes the wave packet to be more localized than the individual 
waves. The greater the number of wavelengths that combine, the more precisely an
associated particle can be located, that is, the smaller However, because each of
the wavelengths corresponds to a different value of momentum according to the de
Broglie relationship, the greater is the uncertainty in the resultant momentum.

¢x.

1¢x21lav2

,x

*
av

 +
h

,p

The uncertainty principle
is not easy for most people to
accept. Einstein spent a good
deal of time from the middle
1920s until his death in 1955
attempting, unsuccessfully, 
to disprove it.

becomes more spread out. Thus as we proceed downward in size to atomic
dimensions, it is no longer valid to consider a particle to be like a hard sphere.
Instead, it becomes more and more wavelike, and it is no longer possible to
determine with precision both its position and its momentum.

Once we understand that the consequence of wave particle duality is the
uncertainty principle, we realize that a fundamental error of the Bohr model
was to constrain an electron to a one-dimensional orbit (1-D in the sense that
the electron cannot move off a circular path of a fixed radius). We are now
ready to turn our attention to a modern description of electrons in atoms.

EXAMPLE 8-7 Calculating the Uncertainty of the Position of an Electron

A 12 eV electron can be shown to have a speed of Assuming that the precision (uncertainty) of
this value is 1.5%, with what precision can we simultaneously measure the position of the electron?

Analyze
When given an uncertainty as a percentage, we have to convert it to a fraction by dividing by 100%. The uncer-
tainty of the velocity is then obtained by multiplying this number by the actual velocity.

Solve
The uncertainty in the electron speed is

The electron mass, (recall Table 2.1), is known much more precisely than the electron speed,
which means that

 = 2.8 * 10-26
 kg m s-1

 ¢p = m¢u = 9.109 * 10-31
 kg * 3.1 * 104

 m s-1

9.109 * 10-31
 kg

¢u = 0.015 * 2.05 * 106
 m s-1

= 3.1 * 104
 m s-1

2.05 * 106
 m>s.

The unit electron-volt (eV).
One electron-volt is the energy
acquired by an electron as it
falls through an electric poten-
tial difference of 1 volt. 
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8-5 CONCEPT ASSESSMENT

An electron has a mass approximately 1/2000th of the mass of a proton.
Assuming that a proton and an electron have similar wavelengths, how would
their speeds compare?

8-6 Wave Mechanics

De Broglie s relationship suggests that electrons are matter waves and thus
should display wavelike properties. A consequence of this wave particle dual-
ity is the limited precision in determining an electron s position and momentum
imposed by the Heisenberg uncertainty principle. How then are we to view
electrons in atoms? To answer this question, we must begin by identifying two
types of waves.

Standing Waves

On an ocean, the wind produces waves on the surface whose crests and
troughs travel great distances. These are called traveling waves. In the traveling
wave shown in Figure 8-1, every portion of a very long rope goes through an
identical up-and-down motion. The wave transmits energy along the entire
length of the rope. An alternative form of a wave is seen in the vibrations in a
plucked guitar string, suggested by Figure 8-18.

Segments of the string experience up-and-down displacements with time,
and they oscillate or vibrate between the limits set by the blue curves. The
important aspect of these waves is that the crests and troughs of the wave occur
at fixed positions and the amplitude of the wave at the fixed ends is zero. Of spe-
cial interest is the fact that the magnitudes of the oscillations differ from point to
point along the wave, including certain points, called nodes, that undergo no dis-
placement at all. A wave with these characteristics is called a standing wave.

We might say that the permitted wavelengths of standing waves are quan-
tized. They are equal to twice the path length divided by a whole number

that is,

(8.12)

The plucked guitar string represents a one-dimensional standing wave, and
so does an electron in a Bohr orbit. Bohr surmised that for an electron to be sta-
ble in a circular orbit, it has to be represented by a standing wave and that an inte-
gral number of wavelengths have to fit the circumference of the orbit (Fig. 8-19).
Also, the fact that Bohr orbits are one dimensional (they are defined by a single

l =
2L

n
  where n = 1, 2, 3, Á and the total number of nodes = n + 1

1n2,
1L2

From equation (8.11), the uncertainty in the electron s position is

Assess
The uncertainty of the electron s position is about 10 atomic diameters. Given the uncertainty in its speed,
there is no way to pin down the electron s position with any greater precision.

PRACTICE EXAMPLE A: Superman has a mass of 91 kg and is traveling at one-fifth the speed of light. If the speed
at which Superman travels is known with a precision of 1.5%, what is the uncertainty in his position?

PRACTICE EXAMPLE B: What is the uncertainty in the speed of a beam of protons whose position is known with
the uncertainty of 24 nm?

¢x =
h

4p¢p
=

6.63 * 10-34
 kg m2

 s-1

4 * 3.14 * 2.8 * 10-26
 kg m s-1

= 1.9 * 10-9
 m = 1.9 * 103

 pm

L +  

L + 3
*

2 

L + 2 
*

2 

*

2 

 FIGURE 8-18
Standing waves in a string
The string can be set into
motion by plucking it. The
blue boundaries outline the
range of displacements at
each point for each standing
wave. The relationships
between the wavelength,
string length, and the number
of nodes points that are not
displaced are given by
equation (8.12). The nodes
are marked by bold dots.
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318 Chapter 8 Electrons in Atoms

dimension, the radius) also points up a serious deficiency in the Bohr model: The
matter waves of electrons in the hydrogen atom must be three dimensional.

Particle in a Box: Standing Waves, Quantum Particles, 
and Wave Functions
In 1927, Erwin Schrödinger, an expert on the theory of vibrations and standing
waves, suggested that an electron (or any other particle) exhibiting wavelike
properties should be describable by a mathematical equation called a wave

function. The wave function, denoted by the Greek letter psi, should corre-
spond to a standing wave within the boundary of the system being described.
The simplest system for which we can write a wave function is another one-
dimensional system, that of a quantum particle confined to move in a one-
dimensional box, a line. The wave function for this so-called particle in a
box  looks like those of a guitar string (Fig. 8-18), but now it represents the
matter waves of a particle. Since the particle is constrained to be in the box, the
waves also must be in the box, as illustrated in Figure 8-20.

If the length of the box is L and the particle moves along the x direction,
then the equation for the standing wave is

(8.13)

where the quantum number, n, labels the wave function.
This wave function is a sine function. To illustrate, consider the case

where
When

At one end of the box both the sine function and the wave function are
zero. At one-fourth the length of the box the sine function and the
wave function both reach their maximum values. At the midpoint of the box,
both are again zero; the wave function has a node. At three-fourths the box
length, both functions reach their minimum values (negative quantities), and at
the farther end of the box, both functions are again zero.

1x = L>42,
1x = 02,

 x = L    sin 2p1L2>L = sin 2p = 0,    and cn1x2 = 0

 x = 3L>4    sin 2p13L>42>L = sin 3p>2 = -1    and cn1x2 = -12>L21>2

 x = L>2,    sin 2p1L>22>L = sin p = 0,    and cn1x2 = 0

 x = L>4,    sin 2p1L>42>L = sin p>2 = 1,    and cn1x2 = 12>L21>2

 x = 0,    sin 2px>L = sin 0 = 0,    and cn1x2 = 0

n = 2.

cn1x2 = A
2

L
 sina

npx

L
b  n = 1, 2, 3, Á

c,

KEEP IN MIND

that a circle is one dimen-
sional in the sense that all
points on the circumference
are at the same distance from
the center. Thus, only one
value needs to be given to
define a circle its radius.

Beating a drum produces a
two-dimensional standing
wave, and ringing a spherical
bell produces a three-
dimensional standing wave.

(b)

+

(a)

+

 FIGURE 8-19
The electron as a matter wave
These patterns are two-dimensional cross-sections of a much more complicated 
three-dimensional wave. The wave pattern in (a), a standing wave, is an acceptable
representation. It has an integral number of wavelengths (five) about the nucleus;
successive waves reinforce one another. The pattern in (b) is unacceptable. The number
of wavelengths is nonintegral, and successive waves tend to cancel each other; that is,
the crest in one part of the wave overlaps a trough in another part of the wave, and
there is no resultant wave at all.

3

The wave functions

n 
(x) *      sin      x

L

2
L

n

Energy

Node

n * 3

n * 2

n * 1

L

2

1

 FIGURE 8-20
The standing waves of
a particle in a one-
dimensional box
The first three wave functions
and their energies are shown
in relation to the position of
the particle within the box.
The wave function changes
sign at the nodes.
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8-6 Wave Mechanics 319

8-4 ARE YOU WONDERING...

How did we arrive at Equation (8.13)?

The answer to how we arrived at equation (8.13) lies in the equation that gives
the form of the wave function and the boundaries to which the quantum
mechanical particle is confined. The particle-in-a-box model assumes that the
electron is free in the box but is unable to get out of the box. This means that the
wave function will be a standing wave inside the box. If you are familiar with dif-
ferential calculus, you will recognize the equation below as a differential equa-
tion. Specifically, it describes a one-dimensional standing wave for the simple
system of a particle in a box. The solution to this equation is the wave function for
the system.

Notice the form of the wave equation: By differentiating the wave function
twice, we obtain the wave function times a constant. Many functions satisfy this
requirement. For example, two trigonometric functions that have this property are
the sine and cosine functions. First, let us consider the function and
differentiate twice with respect to x:

where we can identify and A is an arbitrary factor to be determined.
Second, for the sine function,

Therefore, both functions are acceptable from this point of view. However,
the function must form a standing wave in the box, with a value of zero at the
edges of the box. When , and and so the sine function
is the appropriate function. The determination of A is not quite as straightfor-
ward, and we need to know how to interpret the wave function to determine the
value of A. In carrying out this procedure, we have used the boundary condi-
tions of the system to help decide on the correct form of the wave function,
which is a common procedure when solving quantum mechanical problems.

Finally, if we identify and use the standing wave requirement in
equation (8.12), then

and the function is

where n is identified as a quantum number, n = 1, 2, 3, 4, Á

cn = A sina
npx

L
b

a =
2p

l
=

2p

2L>n
=

np

L

a = 12p>l2

sin 0 = 0,cos 0 = 1x = 0

 
d

2c

dx
2
= -a

2
A sin1ax2 = -a

2c

 
dc

dx
= aA cos1ax2

a = 12p>l2

 
d

2c

dx
2
= -a

2
A cos1ax2 = -a

2c

 
dc

dx
= -aA sin1ax2

c = A cos1ax2

d
2c

dx
2
= - a

2p

l
b

2

c

(continued)
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320 Chapter 8 Electrons in Atoms

What sense can we make of the wave function and the quantum number?
First, consider the quantum number, n. What can we relate it to? The particle
that we are considering is freely moving (not acted upon by any outside
forces) with a kinetic energy given by the expression

(8.14)

Now, to associate this kinetic energy with a wave, we can use de Broglie s rela-
tionship to get

The wavelengths of the matter wave have to fit the standing wave conditions
described earlier for the standing waves of a guitar string (equation 8.12).
Substituting the wavelength of the matter wave from equation (8.12) into the
equation for the energy of the wave yields

So we see that the standing wave condition naturally gives rise to quantiza-
tion of the wave s energy, with the allowable values determined by the value
of n. Note also that as we decrease the size of the box, the kinetic energy of
the particle increases, and according to the uncertainty principle, our know-
ledge of the momentum must decrease. A final noteworthy point is that the
energy of the particle cannot be zero. The lowest possible energy, corresponding
to is called the zero-point energy. Because the zero-point energy is not
zero, the particle cannot be at rest. This observation is consistent with the
uncertainty principle because the position and momentum both must be
uncertain, and there is nothing uncertain about a particle at rest.

The particle-in-a-box model helps us see the origin of the quantization of
energy, but how are we to interpret the wave function, What does it mean
that the value of the wave function can be positive or negative? Actually, unlike
the trajectory of a classical particle, the wave function of a particle has no phys-
ical significance. We need to take a different approach, one suggested by the
German physicist Max Born in 1926. From the electron-as-particle standpoint,
we have a special interest in the probability that the electron is at some particu-
lar point; from the electron-as-wave standpoint, our interest is in electron charge

density. In a classical wave (such as visible light), the amplitude of the wave
corresponds to and the intensity of the wave to The intensity relates to
the photon density the number of photons present in a region. For an electron

c
2.c,

c?

n = 1,

Ek =

h2

2ml2
=

h2

2m12L>n22
=

n2h2

8mL2

Ek =

p2

2m
=

h2

2ml2

1l = h>p2

Ek =

1

2
 mu2

=

m2u2

2m
=

p2

2m

sin
px

L

px

L

x
0 L

x
0 L

cos

L L

 Illustration of why a cosine function is an unacceptable solution for the particle
in a box. The sine function correctly goes to zero at the edge of the box, but the
cosine function does not.
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8-6 Wave Mechanics 321

wave, then, relates to electron charge density. Electron probability is propor-
tional to electron charge density, and both these quantities are associated with

Thus, in Born s interpretation of the wave function, the total probability of
finding an electron in a small volume of space is the product of the square of
the wave function, and the volume of interest. The factor is called the
electron probability density.

Now let us return to a particle constrained to a one-dimensional path in a
box and look at the probabilities for the wave functions. These are shown in
Figure 8-21. First, notice that even where the wave function is negative, the
probability density is positive, as it should be in all cases. Next, look at the
probability density for the wave function corresponding to The high-
est value of is at the center of the box; that is, the particle is most likely to
be found there. The probability density for the state with indicates
that the particle is most likely to be found between the center of the box and
the walls.

A final consideration of the particle-in-a-box model concerns its extension
to a three-dimensional box. In this case, the particle can move in all three
directions x, y, and z and the quantization of energy is described by the fol-
lowing expression.

where there is one quantum number for each dimension. Thus, a three-
dimensional system needs three quantum numbers. With these particle-in-a-
box ideas, we can now discuss solving the quantum mechanical problem of the
hydrogen atom.

Enxnynz =
h2

8m
 B
nx

2

L2
x

+

ny
2

L2
y

+
nz

2

L2
z

R

n = 2
c

2
n = 1.

c
2

c
2,

c
2.

c
2

EXAMPLE 8-8 Using the Wave Functions of a Particle in a One-Dimensional Box

What is the fraction, as a percentage, of the total probability of finding, between points at 0 pm and 30 pm, an
electron in the level of a one-dimensional box 150 pm long?

Analyze
If an electron is in the level, then we have a 100% chance of finding it in that level. The wave func-
tion has 4 nodes 30 pm apart, and there are five maxima in at 15 pm, 45 pm, 75 pm, 105 pm, and 135 pm for
a one-dimensional box 150 pm long.

Solve
The position at 30 pm corresponds to a node in the wave function, and there are four of these (not counting the
nodes at each end of the box). The total area between 0 and 30 pm of represents 25% of the total probability,
and so between 0 pm and 30 pm, we expect to find 25% of the probability.

Assess
We must remember that the particle we are considering exhibits wave particle duality, making it inappropriate
to ask a question about how it gets from one side of the node to the other (but that is an appropriate question for
a classical particle). All we know is that in the state, for example, the particle is in the box somewhere.
When we make a measurement, we ll find the particle on one side of a node or the other. Between 0 and 30 pm,
we have a 25% chance of finding the particle, and the maximum chance occurs at 15 pm.

PRACTICE EXAMPLE A: What is the fraction, as a percentage of the total probability of finding, between points at
50 pm and 75 pm, an electron in the level of a one-dimensional box 150 pm long?

PRACTICE EXAMPLE B: A particle is confined to a one-dimensional box 300 pm long.  For the state having ,
at what points (not counting the ends of the box) does the particle have zero probability of being found?

n = 3

n = 6

n = 5

c
2

c
2

n = 5n = 5

n = 5

 FIGURE 8-21
The probabilities of 
a particle in a 
one-dimensional box
The squares of the first three
wave functions and their
energies are shown in relation
to the position of the particle
within the box. There is no
chance of finding the particle 
at the points where c2

= 0.

The probabilities

n
2
 
(x) *    sin2 (     x)

L

2
L

Energy

Zero

n * 3

n * 2

n * 1

L

3
2*

*

1
2*

2
2*

n+
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322 Chapter 8 Electrons in Atoms

EXAMPLE 8-9 Calculating Transition Energy and Photon Wavelengths for the Particle in a Box

What is the energy difference between the ground state and the first excited state of an electron contained in a
one-dimensional box long? Calculate the wavelength of the photon that could excite the elec-
tron from the ground state to the first excited state.

Analyze
The energy of an electron in level n is

We can write expressions for and subtract them, and then substitute the values for and L. The
ground state corresponds to and the first excited state corresponds to Finally, we can calculate
the wavelength of the photon from the Planck relationship and 

Solve
The energies for the states and are

The energy difference is

The electron mass is Planck s constant and the length of the box is 

Substituting these data into the equation, we obtain

By using Planck s constant and this value as the energy of a photon, we can calculate the frequency of the pho-
ton and then the wavelength. Combining these steps,

Assess
If we needed the energy of the photon in we would have had to multiply by 

and 

PRACTICE EXAMPLE A: Calculate the wavelength of the photon emitted when an electron in a box pm
long falls from the level to the level.

PRACTICE EXAMPLE B: A photon of wavelength 24.9 nm excites an electron in a one-dimensional box from the
ground state to the first excited state. Estimate the length of the box.

n = 3n = 5
5.0 * 101

1023
 mol-1.NA = 6.022 *10-3

 k J>J
1.8 * 10-17

 JkJ mol-1,

l =
hc

Ephoton
=

hc

¢E
=

6.626 * 10-34 J s * 3.00 * 108
 m s-1

1.81 * 10-17
 J

= 11.0 * 10-9
 m = 11.0 nm

 = 1.81 * 10-17
 J

 ¢E =
316.626 * 10-34 J s22

819.109 * 10-31
 kg211.00 * 10-10

 m2
2

(Recall: 1 pm = 10-12
 m.)1.00 * 10-10

 m.

h = 6.626 * 10-34
 J s,9.109 * 10-31

 kg,

¢E = E2 - E1 =
3h2

8mL2

 Efirst excited state = E2 =
h

2

8mL2
122

2

 Eground state = E1 =
h

2

8mL2
112

2

n = 2n = 1

c = ln.
n = 2.n = 1,

h, m,En+1,En

En =
n

2
h

2

8mL2

1En2

1.00 * 102
 pm

8-6 CONCEPT ASSESSMENT

For a particle in a one-dimensional box, in which state (value of n) is the
greatest probability of finding the particle at one-quarter the length of the box
from either end?
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8-6 Wave Mechanics 323

Wave Functions of the Hydrogen Atom
In 1927, Schrödinger showed that the wave functions of a quantum mechani-
cal system can be obtained by solving a wave equation that has since become
known as the Schrödinger equation. We will not go into the details of its

8-5 ARE YOU WONDERING...

What is the Schrödinger equation for the hydrogen atom?

To obtain the Schrödinger equation, we start with the equation for a standing
wave in one dimension:

The next step is to substitute de Broglie s relationship for the wavelength of a
matter wave.

Finally, we use the relationship between momentum and kinetic energy, equation
8.14, to obtain

This is the Schrödinger equation of a free particle moving in one dimension. If the
particle is subjected to a force, then we have

Extending this treatment to three dimensions, we obtain the Schrödinger equa-
tion for the hydrogen atom or hydrogen-like ion, where we understand to be 

the potential energy associated with the interaction of the elec-
tron (charge ), and the nucleus of the one electron atom or ion (charge = Ze).
(See Appendix B, page B-4.)

This is the equation that Schrödinger obtained. In the equation above, 
means that we differentiate twice with respect to x, treating the other variables 
(y and z) as constants. The notation is used instead of because 

depends on more than one variable. 
Following a suggestion by Eugene Wigner, Schrödinger used spherical polar

coordinates to solve it rather than the Cartesian coordinates shown here. That is,
he substituted the values of and z in terms of spherical polar coordinates given
in the caption for Figure 8-22 and performed the necessary lengthy algebra to
collect the variables and The equation he obtained is

where the mass of the electron has been replaced by the more correct reduced
mass of the atom, given by

This is the Schrödinger equation in spherical polar coordinates for a hydrogen-
like ion of atomic number Z or the hydrogen atom if The solutions are
shown in Table 8.1 on page 327.

Z = 1.

1

m
=
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8p2mr2
 B

0

0r
 ar20c

0r
b +
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0
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8p2me

 a
0

2c

0x2
+
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+
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324 Chapter 8 Electrons in Atoms

solution but just describe and interpret the solution using ideas introduced in
the previous discussion.

Solutions of the Schrödinger equation for the hydrogen atom give the wave
functions for the electron in the hydrogen atom. These wave functions
are called orbitals to distinguish them from the orbits of the Bohr theory. The
mathematical form of these orbitals is more complex than for the particle in a
box, but nonetheless they can be interpreted in a straightforward way.

Wave functions are most easily analyzed in terms of the three variables
required to define a point with respect to the nucleus. In the usual Cartesian
coordinate system, these three variables are the and z dimensions. In the
spherical polar coordinate system, they are r, the distance of the point from the
nucleus, and the angles (theta) and (phi), which describe the orientation of
the distance line, r, with respect to the and z axes (Fig. 8-22). Either coor-
dinate system could be used in solving the Schrödinger equation. However,
whereas in the Cartesian coordinate system the orbitals would involve all
three variables, and z, in the spherical polar system the orbitals can be
expressed in terms of one function R that depends only on r, and a second
function Y that depends on and That is,

c1r, u, f2 = R1r2Y1u, f2

f.u

x, y,

x, y,
fu

x, y,
x

r

z

y

Spherical polar coordinates

x
2
 + y

2
 + z

2
 * r

2

x
 
* r sin

y
 
* r sin 

z
 
* r cos

sin

cos*

*

+

* +

*

+

 FIGURE 8-22
The relationship between
spherical polar coordinates
and Cartesian coordinates
The coordinates x, y, and z
are expressed in terms of the
distance r and the angles 
and f.

u
The function is called the radial wave function, and the function is
called the angular wave function. Each orbital has three quantum numbers to
define it since the hydrogen atom is a three-dimensional system. The particular
set of quantum numbers confers a particular functional form to and 

Probability densities and the spatial distribution of these densities can be
derived from these functional forms. We will first discuss quantum numbers
and the orbitals they define, and then the distribution of probability densities
associated with the orbitals.

Y1u, f2.R1r2

Y1u, f2R1r2

8-7 Quantum Numbers and 
Electron Orbitals

In the preceding section we stated that by specifying three quantum numbers
in a wave function we obtain an orbital. Here, we explore the combinations
of quantum numbers that produce different orbitals. First, though, we need to
learn more about the nature of these three quantum numbers.

Assigning Quantum Numbers

The following relationships involving the three quantum numbers arise from
the solution of the Schrödinger wave equation for the hydrogen atom. In this
solution the values of the quantum numbers are fixed in the order listed.

The first number to be fixed is the principal quantum number, n, which may
have only a positive, nonzero integral value.

(8.15)

Second is the orbital angular momentum quantum number, which may be zero
or a positive integer, but not larger than (where n is the principal quan-
tum number).

(8.16)

Third is the magnetic quantum number, which may be a negative or positive
integer, including zero, and ranging from to (where is the orbital
angular momentum quantum number).

(8.17)m/ = -/, 1-/ + 12, Á , -2, -1, 0, 1, 2 Á , 1/ - 12, +/

/+/-/

m/,

/ = 0, 1, 2, 3, Á , n - 1

n - 1
/,

n = 1, 2, 3, 4, Á

c,
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8-7 Quantum Numbers and Electron Orbitals 325

EXAMPLE 8-10 Applying Relationships Among Quantum Numbers

Can an orbital have the quantum numbers and 

Analyze
We must determine whether the given set of quantum numbers is allowed by the rules expressed in equations
(8.15), (8.16), and (8.17).

Solve
No. The quantum number cannot be greater than Thus, if can be only 0 or 1. And if can be
only 0 or cannot be must be 0 if and may be or if 

Assess
It is important that we remember the physical significance of the various quantum numbers, as well as the
rules interrelating their values. Quantum number n determines the radial distribution and the average distance
of the electron and, thus, is most important in determining the energy of an electron. Quantum number deter-
mines the angular distribution or shape of an orbital. As we will soon see, the relationships among the quantum
numbers impart a logical organization of orbitals into shells and subshells.

PRACTICE EXAMPLE A: Can an orbital have the quantum numbers and 

PRACTICE EXAMPLE B: For an orbital with and what is (are) the possible value(s) of /?m/ = 1,n = 3

m/ = 0?n = 3, / = 0,

/

/ = 1.+1-1, 0,/ = 02; m/1, m/

/n = 2, /n - 1./

m/ = 2?n = 2, / = 2,

Principal Shells and Subshells

All orbitals with the same value of n are in the same principal electronic shell

or principal level, and all orbitals with the same n and values are in the
same subshell, or sublevel.

Principal electronic shells are numbered according to the value of n. The first
principal shell consists of orbitals with the second principal shell of
orbitals with and so on. The value of n relates to the energy and most
probable distance of an electron from the nucleus. The higher the value of n, the
greater the electron energy and the farther, on average, the electron is from the
nucleus. The principal quantum number, therefore, has a physical significance,
as do the other quantum numbers. The quantum number determines the
angular distribution, or shape, of an orbital and determines the orientation of
the orbital.

The number of subshells in a principal electronic shell is the same as the
number of allowed values of the orbital angular momentum quantum number, 
In the first principal shell, with the only allowed value of is 0, and
there is a single subshell. The second principal shell with the allowed 
values of 0 and 1, consists of two subshells; the third principal shell has
three subshells ( and 2); and so on. Or, to put the matter in another
way, because there are n possible values of the quantum number, that is,

the number of subshells in a principal shell is equal to the
principal quantum number. As a result, there is one subshell in the principal
shell with two subshells in the principal shell with and so on. The
name given to a subshell, regardless of the principal shell in which it is found,
depends on the value of the quantum number. The first four subshells are

The number of orbitals in a subshell is the same as the number of allowed
values of for the particular value of Recall that the allowed values of 
are and thus the total number of orbitals in a subshell is

The names of the orbitals are the same as the names of the subshells in
which they appear.
2/ + 1.

0, ;1, ;2, Á ;/,
m//.m/

s subshell p subshell d subshell f subshell

/ = 0 / = 1 / = 2 / = 3

/

n = 2,n = 1,

0, 1, 2, Á 1n - 12,
/

/ = 0, 1,
1n = 32

/1n = 22,
/n = 1,

/.

m/

/

n = 2;
n = 1;

/
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326 Chapter 8 Electrons in Atoms

To designate the particular principal shell in which a given subshell or
orbital is found, we use a combination of a number and a letter. For example,
the symbol is used to designate both the p subshell of the second principal
shell and any of the three p orbitals in that subshell.

The energies of the orbitals for a hydrogen atom, in joules, are given by an
equation with a familiar appearance.

It is the same as equation (8.5), the formula derived by Bohr. Orbital energies
for a hydrogen atom depend only on the principal quantum number n. This
means that all the subshells within a principal electronic shell have the same
energy, as do all the orbitals within a subshell. Orbitals at the same energy
level are said to be degenerate. Figure 8-23 shows an energy-level diagram
and the arrangement of shells and subshells for a hydrogen atom.

Some of the points discussed in the preceding paragraphs are illustrated in
Example 8-11.

En = -2.178 * 10-18
a

1

n2
b  J

2p

s orbitals p orbitals d orbitals f orbitals

/ = 0 / = 1 / = 2 / = 3

m/ = 0 m/ = 0, ;1 m/ = 0, ;1, ;2 m/ = 0, ;1, ;2, ;3

one s orbital three p orbitals five d orbitals seven f orbitals
in an s subshell in a p subshell in a d subshell in an f subshell

n * 3

n * 2

n * 1

Shell Subshell

Each subshell is made

up of (2O + 1) orbitals.

3s 3p 3d

2s 2p

1s

O * 1O * 0 O * 2

E
FIGURE 8-23

Shells and subshells of a
hydrogen atom
The hydrogen atom orbitals are
organized into shells and subshells.

*

In Section 8-10 and in
Chapter 24, we will see 
that orbital energies of
multielectron atoms also
depend on the quantum
numbers and m/./

*

EXAMPLE 8-11 Relating Orbital Designations and Quantum Numbers

Write an orbital designation corresponding to the quantum numbers 

Analyze
To write orbital designations you need to recall the conventions associated with the quantum numbers n and 
For the quantum number n we use only the number while for the quantum number we use the following
letters and so on.

Solve
The magnetic quantum number, is not reflected in the orbital designation. The type of orbital is determined
by the quantum number. Because the orbital is of the d type. Because the orbital designation is 

Assess
This is another type of problem in which we need to have memorized the quantum number rules and their
designations. This information will be important in the later chapters.

PRACTICE EXAMPLE A: Write an orbital designation corresponding to the quantum numbers 
and 

PRACTICE EXAMPLE B: Write all the combinations of quantum numbers that define hydrogen-atom orbitals
with the same energy as the orbital.3s

m/ = 1.
n = 3, / = 1,

4d.n = 4,/ = 2,/

m/,

/ = 0, s; / = 1, p; / = 2, d;
/

/.

n = 4, / = 2, m/ = 0.
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8-8 Interpreting and Representing the
Orbitals of the Hydrogen Atom

Our major undertaking in this section will be to describe the three-dimensional
probability density distributions obtained for the various orbitals in the hydro-
gen atom. Through the Born interpretation of wave functions (page 320), we
will represent the probability densities of the orbitals of the hydrogen atom as
surfaces that encompass most of the electron probability. We will see that the
probability density for each type of orbital has its own distinctive shape, and
like all waves, probability densities exhibit nodes and differing phase behavior.
In studying this section, it is important for you to remember that, even though
we will offer some additional quantitative information about orbitals, your pri-
mary concern should be to acquire a broad qualitative understanding. It is this
qualitative understanding that you can apply in our later discussion of how
orbitals enter into a description of chemical bonding.

Throughout this discussion, recall that orbitals are wave functions, mathe-
matical solutions of the Schrödinger wave equation. The wave function itself
has no physical significance. However, the square of the wave function, is a
quantity that is related to probabilities. Probability density distributions based
on are three-dimensional, and it is these three-dimensional regions that we
mean when we refer to the shape of an orbital.

The forms of the radial wave function and the angular wave functionR1r2

c2

c2,

In Chapter 11, we will
discover important uses of
the wave function, itself 
as a basis for discussing
bonding between atoms.

c,

*

TABLE 8.1 The Angular and Radial Wave Functions of a
Hydrogen-Like Atom

Angular Part Y1U, F2 Radial Part Rn, O1r2

Y1s2 = a
1

4p
b

1>2

R11s2 = 2 a
Z

a0
b

3>2

e-s>2

R12s2 =
1

222
 a

Z

a0
b

3>2

12 - s2e-s>2

R13s2 =
1

923
 a

Z

a0
b

3>2

16 - 6s + s2
2e-s>2

Y1px2 = a
3

4p
b

1>2

 sin u cos f R12p2 =
1

226
 a

Z

a0
b

3>2

se-s>2

Y1py2 = a
3

4p
b

1>2

 sin u sin f R13p2 =
1

926
 a

Z

a0
b

3>2

14 - s2se-s>2

Y1pz2 = a
3

4p
b

1>2

 cos u

Y1dz22 = a
5

16p
b

1>2

13 cos2 u - 12 R13d2 =
1

9230
 a

Z

a0
b

3>2

s2e-s>2

Y1dx2
-y

22 = a
15

16p
b

1>2

sin2
 u cos 2f

Y1dxy2 = a
15

16p
b

1>2

 sin2
 u sin 2f s =

2Zr

na0

Y1dxz2 = a
15

4p
b

1>2

 sin u cos u cos f

Y1dyz2 = a
15

4p
b

1>2

 sin u cos u sin f

for a one-electron, hydrogen-like atom are shown in Table 8.1. The first
thing to note is that the angular part of the wave function for an s orbital,
Y1u, f2
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2e*r a0 e*r a0

a0
3 2

1
, +

*4 *( )
(1s)- R(r) Y(  ,   ),+ . / +

0 a0
30

is always the same, regardless of the principal quantum number. Next,

note that the angular parts of the p and d orbitals are also independent of the
quantum number n. Therefore all orbitals of a given type have the
same angular behavior. Also note that the equations in Table 8.1 are in a general
form where the atomic number Z is included. This means that the equations
apply to any one-electron atom, that is, to a hydrogen atom or a hydrogen-like
ion. Finally, note that the term appearing throughout the table is equal to

To obtain the wave function for a particular state, we simply multiply the
radial part by the angular part. We will now illustrate this by looking at the
three major types of orbitals.

s Orbitals
To obtain a complete wave function for the hydrogen orbital, we use 
and and combine the angular and radial wave functions where the red
(radial) and blue (angular) colors indicate the origin of the two parts of the
wave function.

n = 1,
Z = 11s

2Zr>na0.
s

1s, p, d, f2

a
1

4p
b

1>2

,

is the probability
density for a 1s electron at one
point a distance r from the
nucleus. Equally important 
is the probability density
distribution, which gives the
total probability for all points
at a distance r from the
nucleus. In Section 8-10 we
will see that this distribution
is given by 4pr2c2.

c2
11s2

The term has the same significance as in the Bohr theory; it is the first 
Bohr radius 53 pm. By squaring we obtain an expression for the proba-
bility density of finding a electron at a distance r from the nucleus in a
hydrogen atom.

(8.18)

How can we represent in expression (8.18)? One way is to pass a plane
through the nucleus (for example, the xy plane) and plot a graph of electron
probability densities as perpendicular heights above the many points
in the plane at which the electron might be found. The resultant graph, seen in
Figure 8-24(a), looks like a symmetrical, cone-shaped hill  (think of a volcano)

1c2
2

c2

c2
11s2 =

1

p
 a

1

a0
b

3

e-2r>a0

1s
c11s2

a0

95% contour

x axis

x axis

y
 a

x
is

y axis

P
ro

b
ab

il
it

y

35 pm

35 pm

(a) (b) (c)

 FIGURE 8-24
Three representations of the electron probability density for the orbital
(a) In this diagram the probability density is represented by the height above the 
plane (the plane is an arbitrary choice, any plane could have been chosen). (b) A
contour map of the orbital probability density in the plane, pointing out the 95%
contour. (c) A reduced scale 3D representation of the 95% contour of a orbital.1s

xy1s
xy

xy

1s
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(2s)- R(r) Y(  ,   ),+ . / +
a0

3 2 a0
3

1 2

e*r  2a0 e*r  2a0
r

 * (2 ( ()) )1
, + *a0

1

2*2

r
2 a0

1
4

11

*4 20 0

of electron probability densities with its peak directly above the nucleus. As in
topographical maps of Earth s surface, we can project the three-dimensional
surface onto a two-dimensional contour map. The contour map of the hill  of
electron probability densities is shown in Figure 8-24(b). The circular contour
lines join points of equal electron probability density. The contours close to the
nucleus join points of high probability of finding the electron, those farther
away correspond to a lower probability. A simpler way to display the electron
probability is to select just one large contour that together with all the con-
tours within it, encompasses an area of high probability of finding the elec-
tron. The contour usually chosen is the one outlining an area in which the
chance of finding the electron is 95%. The 95% contour just described is for a
plane passing through the nucleus, but an electron in a orbital moves in
three-dimensional space. The complete 95% probability surface is a sphere, as
seen in Figure 8-24(c).

Now let s look at the wave function of the orbital.2s

1s

3s

2s

1s

 FIGURE 8-25
Three-dimensional
representations of the
95% electron probability
density for the 
and orbitals
The first three s orbitals of the
hydrogen atom. Note the
increasing size of the 95%
probability density contour in
proceeding from 1s to 2s and
on to 3s.

3s
1s, 2s,

The electron probability density for the orbital is given by

(8.19)

which, when compared to expression (8.18) for the orbital, shows that the 
electron tends to stay farther from the nucleus than the electron, because the
exponential has changed from for the (equation 8.18) to for the

orbital (equation 8.19). The exponential of the orbital decays more slowly
than that of the 

The factor in the wave function controls the sign of the function.

For small values of is smaller than two and the wave function is positive,
but for large values of is larger than two and the wave function is nega-
tive. At the pre-exponential factor is zero and the wave function is said
to have a radial node. The wave function changes phase (sign) at this radial node.

The fact that the electron probability density of the orbital extends far-
ther from the nucleus than that of the orbital, together with the presence of
the node, means that the 95% electron probability density sphere of a 
orbital is bigger than that of a orbital and contains a sphere of zero proba-
bility due to the radial node. These features are illustrated in Figure 8-25,
which compares the and orbitals. Note that the orbital exhibits
two radial nodes and is larger than both the and orbitals. The number of
nodes increases as the energy is increased a characteristic of high-energy
standing waves. To highlight the change in phase of an orbital in progressing
outward from the nucleus, we have adopted the modern usage of different
colors to represent a change in phase. Thus in Figure 8-25 the orbital is a
single red color throughout, whereas the orbital starts out red and then
switches to blue; and finally, the starts out red, changes to blue and then
back to red, reflecting the presence of two radial nodes. We now turn our
attention to the p orbitals.

p Orbitals
The radial part of for a hydrogen atom is

R12p2 =

1

216
 a

1

a0
b

3>2

 
r

a0
 e-r>2a0

c12p2

3s
2s

1s

2s1s
3s3s1s, 2s,

1s
2s

1s
2s

r = 2a0,
r, r>a0

r, r>a0

2sa2 -

r

a0
b

1s.
2s2s

-r>a01s-2r>a0

1s
2s1s

c2
12s2 =

1

8p
 a

1

a0
b

3

a2 -

r

a0
b

2

e-r>a0

2s
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Thus, the orbital has no radial nodes at finite values of r. In contrast to
the s orbitals, which are nonzero at the p orbitals vanish at This
difference will have an important consequence when we consider multi-
electron atoms.

In contrast to the angular function of the orbital, the angular part of the 
orbital is not a constant, but a function of and This means that the electron
probability density distribution of a p orbital is not spherically symmetric; that
is, it does not have a spherical shape. We see this most easily in Table 8.1 in the
functional form of the angular part of the wave function; it is proportional to
cos Thus the wave function has an angular maximum along the positive z
axis, for there and Along the negative z axis, the wave
function has its most negative value, for there and That
the angular part has its maximum magnitude along the z axis is the reason for
the designation Everywhere in the plane and so the 
plane is a node. Because this node arises in the angular function, it is called an
angular node. A similar analysis of the and orbitals shows that they are sim-
ilar to the orbital, but with angular nodes in the and planes, respectively.

Figure 8-26 shows the two ways of representing the angular part of the 
wave function. In Figure 8-26(a), the function is plotted as a function of 
and results in two tangential circles. In Figure 8-26(b), the function 
which is related to the angular electron probability density, is plotted as a
function of resulting in a double teardrop shape. Both these representations
are used. What is important to note in part (a) of the figure is the phase of the
plot of and in (b), the lack of phase of which is always positive. We
shall see later in the text that the phase of the orbital is important in under-
standing chemical bonding.

The simultaneous display of both the radial and angular parts of is
more difficult to achieve, but Figure 8-27 attempts to do this for the 95% proba-
bility surface of the orbital. All three of the p orbitals are shown in Figure 8-28
and are seen to be directed along the three perpendicular axes of the Cartesian
system. Again we have used different colors to represent the phase alternation
in these orbitals. However, we must remember that these refer only to the
phases of the original wave function, not to 

d Orbitals
The d orbitals occur for the first time when The angular function in
these cases possesses two angular (or planar) nodes. Let s illustrate this with
the orbital that has an angular function proportional to

sin2
 u cos 2f

n = 3.

c2.

pz

c2
12p2

cos2
 u,cos u

u,

cos2 u,
ucos u

pz

xzyzpz

pypx

xycos u = 0,u = p>2xypz.

cos p = -1.u = p

pzcos 0 = +1.u = 0
2pzu.

2pz

f.u

2p2s

r = 0.r = 0,
2p

Value of

cos  
cos     0

cos     0

x axis
xy plane

z axis

(a)

Value of

cos2   

Angular

(planar)

node

1.2

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

0.50.5

*

*

*

*
*

*

FIGURE 8-26
Two representations of the 
p orbital angular function
(a) A plot of in the zx plane,
representing the angular part of 
the wave function. Note the
difference in the color of the function
in the two lobes representing the
phase of the angular wave function.
(b) A plot of in the zx plane,
representing the square of the wave
function and proportional to the
angular probability density of finding
the electron.

cos2
 u

2pz

cos u

*

The points at which a wave
function changes sign are
nodes. However, even
though the wave function
becomes zero at and

these points are not
true nodes because the func-
tion does not change sign at
these points. These points are
sometimes called trivial nodes.

r = q ,
r = 0

2p

*
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FIGURE 8-27
Three representations of electron probability for a 2p orbital

(a) The value of is plotted as a height above a plane passing through
the nucleus, such as the plane. The value of is zero at the nucleus,
rises to a maximum on either side, and then falls off with distance 
along a line through the nucleus (that is, along the or z axis). (b) A
contour plot of the electron probability in a plane passing through the
nucleus, for example, the plane. (c) Electron probabilities and charge
densities represented in three dimensions. The greatest probability of
finding an electron is within the two lobes of the dumbbell-shaped
region. Note that this region is not spherically symmetric. Note also that
the probability drops to zero in the shaded plane the nodal plane (the

plane). As with the and orbitals, we have indicated changes of
phase through different colors.

3s2sxy

xz

x, y,
(r)

c
2

xy

c
2

(c)

z

x

y

(a)

xy plane

xy plane

z
 a

x
is

z axis

(b)

P
ro

b
a
b
il

it
y

 FIGURE 8-28
The three 2p orbitals

The p orbitals are usually represented as directed along the perpendicular x, y, and 
z axes, and the symbols , and are often used. The orbital has m/ = 0.pzpzpypx

z

x

y

yz plane

p
x 

xy plane

p
z

z

x

y

xz plane

p
y

z

x

y

The situation with and is more complex, however. Each of these orbitals has
contributions from both and Our main concern is just to recognize
that p orbitals occur in sets of three and can be represented in the orientation shown
here. In higher-numbered shells, p orbitals have a somewhat different appearance, but
we will use these general shapes for all p orbitals. The colors of the lobes signify the
different phases of the original wave function.

m/ = -1.m/ = 1
pypx
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d
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 FIGURE 8-30
Representations of the five d orbitals
The designations and so on, are related to the values of the quantum number

but this is a detail that we will not pursue in the text. The number of nodal surfaces
for an orbital is equal to the quantum number. For d orbitals, there are two such
surfaces. The nodal planes for the orbital are shown here. (The nodal surfaces dxy

/

m/,
xy, xz, yz,

for the orbital are actually cone-shaped.)dz 2

x

y

d
x

2 

*y
2 

x

y

d
xy

x

z

d
xz

y

z

d
yz

x

z

d
z

2

 FIGURE 8-29
Cross sections of the five d orbitals
The two-dimensional cross sections of the angular functions of the five d orbitals 
in the planes indicated.

How should we visualize this function? We can proceed by setting 
and plotting the function Study Figure 8-22 (page 324) and you will see
that the angle corresponds to the plane, yielding the cross section
in the upper left of Figure 8-29. The wave function exhibits positive and nega-
tive lobes, indicated by the red and blue lobes, respectively, along the x and y
axes. This orbital, in common with all the other d orbitals, is a function of two
of the three variables It is designated The other d orbitals,

and are also displayed in Figure 8-29. We observe that four of
them have the same basic shape except for orientation with respect to the axes
and that has quite a different shape.

The 95% probability surfaces of the five d orbitals are shown in Figure 8-30.
Two of the d orbitals are seen to be directed along the three1dx

2
-y

2 and dz22

dz
2

dz
2,dxy, dxz, dyz,

dx
2
-y

2.1x, y, and z2.

xyu = p>2
cos 2f.

u = p>2
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8-6 ARE YOU WONDERING...

What does a and a orbital look like?

When considering the shapes of the atomic orbitals with higher principal quantum
number, we can draw on what we have discussed already and include the extra
radial nodes that occur. For example, the orbital has a total of two nodes (num-
ber of ); one of these nodes is taken up with the angular node of the
angular part of the wave function, so that the radial part of the wave function
will also have a node. Figure 8-31 shows a contour plot of the value of the wave
function in the plane in the manner of Figure 8-27(b). We notice that the 
orbital has the same general shape as a orbital due to the angular node, but the
radial node has appeared as a circle (dashed in Figure 8-31). The appearance of the

orbital is that of a smaller p orbital inside a larger one. Similarly the orbital 

appears as a smaller inside a larger one. In Figure 8-31 the radial node is 
indicated by the dashed circle and the presence of the node is indicated by the
alternation in color. This idea can be extended to enable us to sketch orbitals of
increasing principal quantum number.

dxy

4dxy3pz

2pz

3pzxz

3pz

3pz

nodes = n - 1
3pz

4dxy3pz

3p
z

x

z

4d
xy

y

x

 FIGURE 8-31
Contour plots for and the orbital
The relative phases in these orbitals are shown by the colors red and blue. 
The radial nodes are represented by the dashed circles.

4dxy3pz

perpendicular axes of the Cartesian system, and the remaining three
are seen to point between these Cartesian axes. Again, the relative

phases of the lobes of the original wave function are indicated by the different
colors. The d orbitals are important in understanding the chemistry of the tran-
sition elements, as we will see in Chapter 23.

1dxy, dxz, dyz2

8-7 CONCEPT ASSESSMENT

What type of orbital has three angular nodes and one radial node?

8-9 Electron Spin: A Fourth Quantum Number

Wave mechanics provides three quantum numbers with which we can
develop a description of electron orbitals. However, in 1925, George
Uhlenbeck and Samuel Goudsmit proposed that some unexplained features of
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Oven

Ag atoms

Slit Magnet Detector

 FIGURE 8-33
The Stern Gerlach experiment
Ag atoms vaporized in the oven are collimated into a beam by the slit, and the beam
is passed through a nonuniform magnetic field. The beam splits in two. The beam of
atoms would not experience a force if the magnetic field were uniform. The field
strength must be stronger in certain directions than in others.

e+

m
s
 * ,

S

N
1
2

e+

m
s
 * +

N

S
1
2

 FIGURE 8-32
Electron spin visualized
Two possibilities for electron spin are shown with their associated magnetic fields. 
Two electrons with opposing spins have opposing magnetic fields that cancel, 
leaving no net magnetic field for the pair.

the hydrogen spectrum could be understood by assuming that an electron acts
as if it spins, much as Earth spins on its axis. As suggested by Figure 8-32,
there are two possibilities for electron spin. Thus, these two possibilities
require a fourth quantum number, the electron spin quantum number 
The electron spin quantum number may have a value of (also denoted by
the arrow ) or (denoted by the arrow ); the value of does not depend
on any of the other three quantum numbers.

What is the evidence that the phenomenon of electron spin exists?
An experiment by Otto Stern and Walter Gerlach in 1920, though designed
for another purpose, seems to yield this proof (Fig. 8-33). Silver was vapor-
ized in an oven, and a beam of silver atoms was passed through a nonuni-
form magnetic field, where the beam split in two. Here is a simplified
explanation.

1. An electron, because of its spin, generates a magnetic field.

2. A pair of electrons with opposing spins has no net magnetic field.

3. In a silver atom, 23 electrons have a spin of one type and 24 of the opposite
type. The direction of the net magnetic field produced depends only on
the spin of the unpaired electron.

4. In a beam of a large number of silver atoms there is an equal chance that the
unpaired electron will have a spin of or The magnetic field induced
by the silver atoms interacts with the nonuniform field, and the beam of sil-
ver atoms splits into two beams.

-
1
2.+

1
2

m
s

T-
1
2

c

+
1
2

m
s
.
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Electronic Structure of the H Atom: Representing 
the Four Quantum Numbers
Now that we have described the four quantum numbers, we are in a position to
bring them together into a description of the electronic structure of the hydro-
gen atom. The electron in a ground-state hydrogen atom is found at the lowest
energy level. This corresponds to the principal quantum number and
because the first principal shell consists only of an s orbital, the orbital quantum
number The only possible value of the magnetic quantum number is

Either spin state is possible for the electron, and we do not know which
it is unless we do an experiment like that of Uhlenbeck and Goudsmit s. Thus,

Chemists often say that the electron in the ground-state hydrogen atom is in
the orbital, or that it is a electron, and they represent this by the notation

where the superscript 1 indicates one electron in the orbital. Either spin
state is allowed, but we do not designate the spin state in this notation.

In the excited states of the hydrogen atom, the electron occupies orbitals
with higher values of n. Thus, when excited to the level with the elec-
tron can occupy either the or one of the orbitals; all have the same energy.
Because the probability density extends farther from the nucleus in the and

orbitals than in the orbital, the excited-state atom is larger than is the
ground-state atom. The excited states just described can be represented as

In the remaining sections of the chapter this discussion will be extended to the
electronic structures of atoms having more than one electron multielectron atoms.

2s1
 or 2p1

1s2p
2s

2p2s
n = 2,

1s

1s1

1s1s

n = 1 / = 0 m/ = 0 ms = +  

1

2
 or -  

1

2

m/ = 0.
/ = 0.

n = 1,

KEEP IN MIND

that orbitals are mathematical
functions and not themselves
physical regions in space.
However, it is customary to
refer to an electron that is
described by a particular
orbital as being in the
orbital.

EXAMPLE 8-12 Choosing an Appropriate Combination of the Four Quantum Numbers: 
and 

From the following sets of quantum numbers identify the set that is correct, and state the orbital
designation for those quantum numbers:

Analyze
We know that if has two possible values: 0 or 1. The range of values for is given by equation (8.16), 

and By using this information, we can judge which combination is correct.

Solve

ms = ;  

1

2
.

m/n = 2, /

12, 1, 0, 02 a2, 0, 1, 
1

2
b a2, 2, 0, 

1

2
b a2, -1, 0, 

1

2
b a2, 1, 0, -  

1

2
b

1n, /, m/, ms2,

msn, O, mO,

1n, O, mO, ms
2 Comment

12, 1, 0, 02 The value of is incorrect.ms

a2, 0, 1, 
1

2
b µThe value of is incorrect.m/

a2, 2, 0, 
1

2
b The value of is incorrect./

a2, -1, 0, 
1

2
b The value of is incorrect./

a2, 1, 0, -  

1

2
b All the quantum numbers are correct.

(continued)
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The correct combination of quantum numbers has and which corresponds to a 
orbital.

Assess
The combination of quantum numbers identified above for an electron in a orbital is one of six possible 

combinations. The other five combinations for an electron in a orbital are 

and 

PRACTICE EXAMPLE A: Determine which set of the following quantum numbers is wrong and
indicate why:

PRACTICE EXAMPLE B: Identify the error in each set of quantum numbers below:

12, 1, 1, 02 a1, 1, 0, 
1

2
b a3, -1, 1, -

1

2
b a0, 0, 0, -

1

2
b a2, 1, 2, 

1

2
b

13, 2, -2, 12 a3, 1, -2, 
1

2
b a3, 0, 0, 

1

2
b a2, 3, 0, 

1

2
b a1, 0, 0, -

1

2
b a2, -1, -1, 

1

2
b

1n, /, m/, ms2

a2, 1, 1, 
1

2
b .a2, 1, -1, 

1

2
b , a2, 1, 1, -  

1

2
b ,

a2, 1, -1, -  

1

2
b ,a2, 1, 0, 

1

2
b ,2p

2p

2p
ms = -  

1

2
,n = 2, / = 1, m/ = 0,

8-10 Multielectron Atoms

Schrödinger developed his wave equation for the hydrogen atom an atom
containing just one electron. For multielectron atoms, a new factor arises:
mutual repulsion between electrons. The repulsion between the electrons
means that the electrons in a multielectron atom tend to stay away from one
another, and their motions become inextricably entangled. The approximate
approach taken to solve this many-particle problem is to consider the elec-
trons, one by one, in the environment established by the nucleus and the
other electrons. When this is done, the electron orbitals obtained are of the
same types as those obtained for the hydrogen atom; they are called
hydrogen-like orbitals. Compared with the hydrogen atom, the angular parts
of the orbitals of a multielectron atom are unchanged, but the radial parts are
different.

We have seen that the solution of the Schrödinger equation for a hydrogen
atom gives the energies of the orbitals and that all orbitals with the same prin-
cipal quantum number n are degenerate they have the same energy. In a
hydrogen atom, the orbitals and are degenerate, as are and 

In multielectron atoms, the attractive force of the nucleus for a given elec-
tron increases as the nuclear charge increases. As a result, we find that orbital
energies become lower (more negative) with increasing atomic number of the
atom. Also, orbital energies in multielectron atoms depend on the type of
orbital; the orbitals with different values of within a principal shell are not
degenerate.

Penetration and Shielding

Think about the attractive force of the atomic nucleus for one particular elec-
tron some distance from the nucleus. Electrons in orbitals closer to the nucleus
screen or shield the nucleus from electrons farther away. In effect, the screening
electrons reduce the effectiveness of the nucleus in attracting the particular
more-distant electron. They effectively reduce the nuclear charge.

The magnitude of the reduction of the nuclear charge depends on the types
of orbitals the inner electrons are in and the type of orbital that the screened
electron is in. We have seen that electrons in s orbitals have a high probability
density at the nucleus, whereas p and d orbitals have zero probability densities

/

3d.3s, 3p,2p2s

KEEP IN MIND

that orbital-wave functions
extend farther out from the
nucleus as n increases. Thus,
an electron in a or 
orbital has a higher probabil-
ity of being farther from the
nucleus than does an electron
in a orbital.1s

3p3s
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8-10 Multielectron Atoms 337

at the nucleus. Thus, electrons in s orbitals are more effective at screening the
nucleus from outer electrons than are electrons in p or d orbitals. This ability of
electrons in s orbitals that allows them to get close to the nucleus is called
penetration. An electron in an orbital with good penetration is better at screen-
ing than one with low penetration.

We must consider a different kind of probability distribution to describe
the penetration to the nucleus by orbital electrons. Rather than considering
the probability at a point, which we did to ascribe three-dimensional shapes
to orbitals, we need to consider the probability of finding the electron any-
where in a spherical shell of radius r and an infinitesimal thickness. This
type of probability is called a radial probability distribution and is found by
multiplying the radial probability density, by the factor the area
of a sphere of radius r. Figure 8-34 offers a dartboard analogy that might
help clarify the distinction between probability at a point and probability in
a region of space.

The quantity provides a different insight into the behavior of
the electron. The radial probability distributions for some hydrogenic (hydro-
gen-like) orbitals are plotted in Figure 8-35. The radial probability density,

for a orbital predicts that the maximum probability for a electron is
at the nucleus. However, because the volume of this region is vanishingly small

the radial probability distribution is zero at the
nucleus. The electron in a hydrogen atom is most likely to be found 53 pm from
the nucleus; this is where the radial probability distribution reaches a maxi-
mum. This is the same radius as the first Bohr orbit. The boundary surface
within which there is a 95% probability of finding an electron (see Figure 8-25,
p. 329) is a much larger sphere, one with a radius of about 141 pm.

In comparing the radial probability curves for the and orbitals, we
find that a electron has a greater probability of being close to the nucleus
than a electron does, which in turn has a greater probability than does a 
electron. In comparing and orbitals, a electron has a greater chance of
being close to the nucleus than a electron does. The electron exhibits2s2p

2s2p2s
3s2s

1s
3s1s, 2s,

34pr2
* R2

1r241r = 02,

1s1sR2
1r2,

4pr2
* R2

1r2

4pr2,R2
1r2,

 FIGURE 8-34
Dartboard analogy to 
a 1s orbital
Imagine that a single dart
(electron) is thrown at a
dartboard 1500 times. The
board contains 95% of all the
holes; it is analogous to the 
orbital. Where is a thrown 
dart most likely to hit? The
number of holes per unit 
area is greatest in the 50
region that is, the 50 region
has the greatest probability
density. The most likely score
is 30,  however, because the
most probable area hit is in
the 30 ring and not the 
50 ring, which is smaller than
the 30 ring. The 30 ring on
the dartboard is analogous to
a spherical shell of 53 pm
radius within the larger sphere
representing the orbital.1s

1s

50

40

30

20

10

5 1510

n * 2

2p

0

0.25

0.20

0.15

0.10

0.05

0

0.25

0.20

0.15

0.10

0.05

0

5 10 15 20 25 30

n * 3

3s

0

0.12

0.10

0.08

0.06

0.04

0.02

0
5 10 15 20 25 30

n * 3

3d

0

0.12

0.10

0.08

0.06

0.04

0.02

0
5 10 15 20 25 30

n * 3

3p

0

0.12

0.10

0.08

0.06

0.04

0.02

0

5

r/a
0

r/a
0

r/a
0

r/a
0

r/a
0

r/a
0

10

n * 1   * 0
  * 0

  * 0

  * 1

  * 1   * 2

1s

0

0.6

0.5

0.4

0.3

0.2

0.1

0
5 10 15

n * 2

2s

0

 FIGURE 8-35
Radial probability distributions
Graphs of the value of as a function of r for the orbitals in the first 
three principal shells. Note that the smaller the orbital angular momentum quantum
number, the more closely an electron approaches the nucleus. Thus, s orbital electrons
penetrate more, and are less shielded from the nucleus, than electrons in other orbitals
with the same value of n.

4pr2
R

2
1r2
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338 Chapter 8 Electrons in Atoms

greater penetration than the electron. Electrons having a high degree of pen-
etration effectively block the view  of an electron in an outer orbital looking
for the nucleus.

The nuclear charge that an electron would experience if there were no inter-
vening electrons is Z, the atomic number. The nuclear charge that an electron
actually experiences is reduced by intervening electrons to a value of 
called the effective nuclear charge. The less of the nuclear charge that an outer
electron sees  (that is, the smaller the value of ), the smaller is the attrac-
tion of the electron to the nucleus, and hence the higher is the energy of the
orbital in which the electron is found.

To summarize, compared with a p electron in the same principal shell, an s
electron is more penetrating and not as well screened. The s electron experi-
ences a higher is held more tightly, and is at a lower energy than a p elec-
tron. Similarly, the p electron is at a lower energy than a d electron in the same
principal shell. Thus, the energy level of a principal shell is split into separate
levels for its subshells. There is no further splitting of energies within a sub-
shell, however, because all the orbitals in the subshell have the same radial
characteristics and thereby experience the same effective nuclear charge, 
As a result, all three p orbitals of a principal shell have the same energy; all five
d orbitals have the same energy; and so on.

In a few instances, the combined effect of the decreased spacing between
successive energy levels at higher quantum numbers (because of the energy
dependence on ) and the splitting of subshell energy levels (because of
shielding and penetration) causes some energy levels to overlap. For example,
because of the extra penetration of a electron over that of a electron, the 
energy level is below the level despite its higher principal quantum number n
(Fig. 8-36). We will see some of the consequences of this energy-level splitting
in the next two sections, where we consider the relationship between the elec-
tronic structures of atoms and their positions in the periodic table.

3d
4s3d4s

1>n2

Zeff.

Zeff,

Zeff

Zeff,

2p

 FIGURE 8-36
Orbital energy-level diagram for the first three electronic shells
Energy levels are shown for a hydrogen atom (left) and three typical multielectron atoms
(right). Each multielectron atom has its own energy-level diagram. Note that for the
hydrogen atom, orbital energies within a principal shell for example, are
alike (degenerate), but in a multielectron atom they become rather widely separated.
Another feature of the diagram is the steady decrease in all orbital energies with
increasing atomic number. Finally, note that the orbital is at a lower energy than 3d.4s

3s, 3p, 3d
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KEEP IN MIND

that, similar to the situation 
in equation (8.9), the energy
of an orbital is given 
by the proportionality

-

Zeff
2

n2
.En r

1En2
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8-11 Electron Configurations 339

8-11 Electron Configurations
The electron configuration of an atom is a designation of how electrons are
distributed among various orbitals in principal shells and subshells. In later
chapters, we will find that many of the physical and chemical properties of
elements can be correlated with electron configurations. In this section, we
will see how the results of wave mechanics, expressed as a set of rules, can
help us to write probable electron configurations for the elements.

Rules for Assigning Electrons to Orbitals
1. Electrons occupy orbitals in a way that minimizes the energy of the atom.

Figure 8-36 suggests the order in which electrons occupy the subshells in
the principal electronic shells; first the then and so on. The exact
order of filling of orbitals has been established by experiment, principally
through spectroscopy and magnetic studies, and it is this order based on
experiment that we must follow in assigning electron configurations to the
elements. With only a few exceptions, the order in which orbitals fill is

(8.20)

Some students find the diagram pictured in Figure 8-37 a useful way to
remember this order, but the best method of establishing the order of fill-
ing of orbitals is based on the periodic table, as we will see in Section 8-12.

2. No two electrons in an atom can have all four quantum numbers alike
the Pauli exclusion principle. In 1926, Wolfgang Pauli explained complex
features of emission spectra associated with atoms in magnetic fields by
proposing that no two electrons in an atom can have all four quantum
numbers alike. The first three quantum numbers, and determine a
specific orbital. Two electrons may have these three quantum numbers
alike; but if they do, they must have different values of the spin quan-
tum number. Another way to state this result is that only two electrons may
occupy the same orbital, and these electrons must have opposing spins.

Because of this limit of two electrons per orbital, the capacity of a sub-
shell for electrons can be obtained by doubling the number of orbitals in
the subshell. Thus, the s subshell consists of one orbital with a capacity of
two electrons; the p subshell consists of three orbitals with a total capacity
of six electrons; and so on.

3. When orbitals of identical energy (degenerate orbitals) are available,
electrons initially occupy these orbitals singly. In line with this rule,
known as Hund s rule, an atom tends to have as many unpaired electrons
as possible. This behavior can be rationalized by saying that electrons,
because they all carry the same electric charge, try to get as far apart as
possible. They do this by seeking out empty orbitals of similar energy in
preference to pairing up with an electron in a half-filled orbital.

Representing Electron Configurations
Before we assign electron configurations to atoms of the different elements,
we need to introduce methods of representing these configurations. The elec-
tron configuration of a carbon atom is shown in three different ways:

 orbital diagram:   C

 spdf notation 1expanded2:  C  1s22s22px
12py

1

 spdf notation 1condensed2:  C  1s22s22p2

ms,

m/,n, /,

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

2s, 2p,1s,

1s

2s

3s

4s

5s

6s

7s

2p

3p

4p

5p

6p

3d

4d

5d

4f

5f

6d

7p

 FIGURE 8-37
The order of filling of
electronic subshells
Beginning with the top line,
follow the arrows, and the
order obtained is the same as
in expression (8.20).

This order of filling
corresponds roughly to the
order of increasing orbital
energy, but the overriding
principle governing the order
of filling of orbitals is that the
energy of the atom as a whole
be kept at a minimum.

1s 2s 2p

In each of these methods we assign six electrons because the atomic number
of carbon is 6. Two of these electrons are in the subshell, two in the and2s,1s
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340 Chapter 8 Electrons in Atoms

N

O

F

Ne

1s 2s 2p

two in the The condensed spdf notation denotes only the total number of
electrons in each subshell; it does not show how electrons are distributed
among orbitals of equal energy. In the expanded spdf notation, Hund s rule is
reflected in the assignment of electrons to the subshell two orbitals are
singly occupied and one remains empty. The orbital diagram breaks down
each subshell into individual orbitals (drawn as boxes). This notation is simi-
lar to an energy-level diagram except that the direction of increasing energy is
from left to right instead of vertically.

Electrons in orbitals are shown as arrows. An arrow pointing up corresponds
to one type of spin and an arrow pointing down to the other 
Electrons in the same orbital with opposing (opposite) spins are said to be paired

The electrons in the and orbitals of the carbon atom are paired.
Electrons in different, singly occupied orbitals of the same subshell have the
same, or parallel, spins (arrows pointing in the same direction). This is con-
veyed in the orbital diagram for carbon, where we write rather than

for the subshell. Both experiment and theory confirm that an elec-2p3c43T43 4
3c43c43 4

2s1s1c T2.

1-
1
22.1+

1
22,

2p2p

2p.

tron configuration in which electrons in singly occupied orbitals have parallel
spins is a better representation of the lowest energy state of an atom than any
other electron configuration that we can write. The configuration represented by
the orbital diagram is, in fact, an excited state of carbon; any orbital
diagram with unpaired spins that are not parallel constitutes an excited state.

The most stable or the most energetically favorable configurations for isolated
atoms, those discussed here, are called ground-state electron configurations. Later in
the text we will briefly mention some electron configurations that are not the
most stable. Atoms with such configurations are said to be in an excited state.

The Aufbau Process

To write electron configurations we will use the aufbau process. Aufbau is a
German word that means building up,  and what we do is assign electron
configurations to the elements in order of increasing atomic number. To pro-
ceed from one atom to the next, we add a proton and some neutrons to the
nucleus and then describe the orbital into which the added electron goes.

The lowest energy state for the electron is the orbital. The
electron configuration is 

A second electron goes into the orbital, and the two elec-
trons have opposing spins, 

The third electron cannot be accommodated in the orbital
(Pauli exclusion principle). It goes into the lowest energy orbital available,

The electron configuration is 
The configuration is 

Now the subshell begins to fill: 
A second electron also goes into the subshell, but into one of

the remaining empty p orbitals (Hund s rule) with a spin parallel to the
first 2p electron. (See figure to the left.)

2pZ * 6, C.
1s22s22p1.2pZ * 5, B.

1s22s2.Z * 4, Be.
1s22s1.2s.

1sZ * 3, Li.
1s2.

1sZ * 2, He.
1s1.

1sZ * 1, H.

3c43T43 4

1s 2s 2p

When listed in tables, 
as in Appendix D, electron
configurations are usually
written in the condensed 
spdf notation.

*

In this series of four elements, the filling of the 
subshell is completed. The number of unpaired electrons reaches a maxi-
mum (three) with nitrogen and then decreases to zero with neon.

Z * 7 10, N through Ne
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8-11 Electron Configurations 341

Although method (b)
conforms better to the order
in which orbitals fill, method
(a) better represents the order
in which electrons are lost on
ionization, as we will see in
the next chapter.

*

Sc:    [Ar] [Ar]3d14s2

Ti:     [Ar] [Ar]3d24s2

V:     [Ar] [Ar]3d34s2

Cr:    [Ar] [Ar]3d54s1

Mn:   [Ar] [Ar]3d54s2

Fe:    [Ar] [Ar]3d64s2

Co:    [Ar] [Ar]3d74s2

Ni:    [Ar] [Ar]3d84s2

Cu:    [Ar] [Ar]3d104s1

Zn:    [Ar] [Ar]3d104s2

3d 4s

The filling of orbitals for this series of eight
elements closely parallels the eight elements from Li through Ne, except
that electrons go into and subshells. Each element has the and

subshells filled. Because the configuration is that of neon, we
will call this the neon core, represent it as [Ne], and concentrate on the
electrons beyond the core. Electrons that are added to the electronic shell
of highest principal quantum number (the outermost, or valence shell) are
called valence electrons. The electron configuration of Na is written
below in a form called a noble-gas-core-abbreviated electron configuration,
consisting of [Ne] as the noble gas core and as the configuration of the
valence electron. For the other third-period elements, only the valence-
shell electron configurations are shown.

and 20, K and Ca. After argon, instead of the next subshell to fill
is Using the symbol [Ar] to represent the noble gas core, 
we get the electron configurations shown below for K and Ca.

30, Sc through Zn. In this next series of elements, electrons fill
the d orbitals of the third shell. The d subshell has a total capacity of ten
electrons ten elements are involved. There are two possible ways to
write the electron configuration of scandium.

Both methods are commonly used. Method (a) groups together all the sub-
shells of a principal shell and places subshells of the highest principal
quantum level last. Method (b) lists orbitals in the apparent order in which
they fill. In this text, we will use method (a).

The electron configurations of this series of ten elements are listed
below in both the orbital diagram and the spdf notation.

1a2 Sc: 3Ar43d14s2 or 1b2 Sc: 3Ar44s23d1

Z * 21

K: 3Ar44s1 and Ca: 3Ar44s2

1s22s22p63s23p6,4s.
3d,Z * 19

Na Mg Al Si P S Cl Ar

3Ne43s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6

3s1

1s22s22p62p
1s, 2s,3p3s

Z * 11 18, Na through Ar.

The d orbitals fill in a fairly regular fashion in this series, but there are two
exceptions: chromium (Cr) and copper (Cu). These exceptions are usually
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342 Chapter 8 Electrons in Atoms

explained in terms of a special stability for configurations in which a sub-
shell is half-filled with electrons, as with or completely filled, as 
with 

Ga through Kr. In this series of six elements, the subshell
is filled, ending with krypton.

Kr: 3Ar43d104s24p6

4pZ * 31 36,

Cu 13d10
2.

Cr 13d5
2,

3d

8-7 ARE YOU WONDERING...

Why chromium and copper have anomalous  electron
configurations?

First we need to recognize that the balance between electron electron repul-
sions, electron nuclear attractions, and other electron electron interactions, due
to the fact that electron motions in a multielectron atom are correlated, deter-
mines the most stable electron configuration. Next, recall Hund s rule that the
subshell electron configuration with the greatest number of unpaired electrons is
the most stable. On page 340, this led us to the conclusion that the ground-state
electron configuration of carbon is with two unpaired electrons in 
the subshell. Calculations on simple atoms and ions have shown
that, although there is a larger electron electron repulsion in the state with
the unpaired electrons, this repulsion is more than offset by a larger electron
nucleus attraction because the electrons are closer to the nucleus in the configu-
ration with unpaired electrons. Thus, configurations with unpaired electrons are
favored.

In determining the ground-state electron configuration of Cr, we have to
choose between and because the energies of the 3d and 4s
orbitals are very similar. In this case, we can use Hund s rule to decide that the
most stable electron configuration is that with the most unpaired electrons, that
is, 

For Cu we have to choose between and and there is no
difference between the number of unpaired electrons Hund s rule is no help
here. So where does the extra stability for the configuration come
from? A filled (or half-filled) subshell has a spherically symmetrical charge den-
sity that leads to a more stable electron configuration; and the greater the num-
ber of electrons in that subshell, the greater the stabilization. The 
electron configuration is more stable than because of its filled sub-
shell. Thus nearly all the anomalous configurations contain either filled or half-
filled subshells.

3d3Ar43d94s2
3Ar43d104s1

3Ar43d104s1

3Ar43d104s1,3Ar43d94s2
3Ar43d54s1.

3Ar43d54s1,s
243d4

3Ar4

2p
1s22s22p2,

Rb to Xe. In this series of 18 elements, the subshells fill in the
order and ending with the configuration of xenon.

Cs to Rn. In this series of 32 elements, with a few exceptions,
the subshells fill in the order The configuration of radon is

Fr to ? Francium starts a series of elements in which the sub-
shells that fill are and presumably although atoms in which
filling of the subshell is expected have only recently been discovered
and are not yet characterized.

Appendix D gives a complete listing of probable electron configurations.

7p
7p,7s, 5f, 6d,

Z * 87 ?,

Rn: 3Xe44f145d106s26p6

6s, 4f, 5d, 6p.
Z * 55 86,

Xe: 3Kr44d105s25p6

5p,5s, 4d,
Z * 37 54,
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EXAMPLE 8-13 Recognizing Correct and Incorrect Ground State and Excited 
State Atomic Orbital Diagrams

Which of the following orbital diagrams is incorrect? Explain. Which of the correct diagrams corresponds to an
excited state and which to the ground state of the neutral atom?

Analyze
When faced with a set of orbital diagrams, the best strat-
egy is to investigate each one and apply Hund s rule and
the Pauli exclusion principle, the former to decide on
ground or excited states, and the latter for the correctness
of the diagram.

Solve
(a) By scanning diagram (a), we see that all the

orbitals and are filled with two elec-
trons of opposite spin, conforming to the Pauli
exclusion principle. However, the orbital con-
tains three electrons, which violates this principle.

(b) In diagram (b), the orbitals and are
filled with two electrons of opposite spin, which is
correct. The level contains three electrons in
separate orbitals, conforming to Hund s rule, but
two of them have opposite spin to the other; con-
sequently, this is an excited state of the element.

(c) When we compare diagram (c) with diagram (b), we see that all the three electrons in the subshell
have the same spin, and so this is the ground state.

(d) When we compare diagram (d) with diagram (b), we see that of the three electrons in the subshell,
two are paired and one is not. Again, this is an excited state.

(e) By scanning diagram (e), we see that all the orbitals and are filled with two electrons of oppo-
site spin. However, the orbital contains two electrons with the same spin, which violates the Pauli
principle. This diagram is incorrect.

Assess
Orbital diagrams are a useful way to display electronic configurations, but we must take care to obey Hund s
rule and the Pauli exclusion principle.

PRACTICE EXAMPLE A: Which two of the following orbital diagrams are equivalent?

PRACTICE EXAMPLE B: Does the following orbital diagram for a neutral species correspond to the ground state
or an excited state?

3p
2p1s, 2s,

3p

3p

3p

3s1s, 2s, 2p,

3p

3s1s, 2s, 2p,

(a)

1s 2s 2p

(b)

1s 2s 2p

(c)

1s 2s 2p

(d)

1s 2s 2p

[Ar]

4p4s 3d

2s 2p

2s 2p

2s 2p

2s

(a)

1s

(b)

1s

(c)

1s

(d)

1s

3s

3s

3s

3s2p

3p

3p

3p

2s 2p

(e)

1s 3s 3p

3p
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TABLE 8.2 Electron Configurations of Some Groups of Elements

Group Element Configuration

1 H 1s1

Li 3He42s1

Na 3Ne43s1

K 3Ar44s1

Rb 3Kr45s1

Cs 3Xe46s1

Fr 3Rn47s1

17 F 3He42s22p5

Cl 3Ne43s23p5

Br 3Ar43d104s24p5

I 3Kr44d105s25p5

At 3Xe44f145d106s26p5

18 He 1s2

Ne 3He42s22p6

Ar 3Ne43s23p6

Kr 3Ar43d104s24p6

Xe 3Kr44d105s25p6

Rn 3Xe44f145d106s26p6

8-12 Electron Configurations 
and the Periodic Table

We have just described the aufbau process of making probable assignments of
electrons to the orbitals in atoms. Although electron configurations may seem
rather abstract, they actually lead us to a better understanding of the periodic
table. Around 1920, Niels Bohr began to promote the connection between the peri-
odic table and quantum theory. The chief link, he pointed out, is in electron con-
figurations. Elements in the same group of the table have similar electron configurations.

To construct Table 8.2, we have taken three groups of elements from the peri-
odic table and written their electron configurations. The similarity in electron
configuration within each group is readily apparent. If the shell of the highest
principal quantum number the outermost, or valence, shell is labeled n, then

The group 1 atoms (alkali metals) have one outer-shell (valence) electron
in an s orbital, that is, 

The group 17 atoms (halogens) have seven outer-shell (valence) electrons, in
the configuration 

The group 18 atoms (noble gases) with the exception of helium, which
has only two electrons have outermost shells with eight electrons, in the
configuration 

Although it is not correct in all details, Figure 8-38 relates the aufbau process
to the periodic table by dividing the table into the following four blocks of ele-
ments according to the subshells being filled:

s block. The s orbital of highest principal quantum number (n) fills. The
s block consists of groups 1 and 2 (plus He in group 18).

p block. The p orbitals of highest quantum number (n) fill. The p block
consists of groups 13, 14, 15, 16, 17, and 18 (except He).

d block. The d orbitals of the electronic shell (the next to outer-
most) fill. The d block includes groups 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.

f block. The f orbitals of the electronic shell fill. The f-block ele-
ments are the lanthanides and the actinides.

n - 2

n - 1

ns
2
np

6.

ns
2
np

5.

ns
1.

Hydrogen is found in
group 1 because of its
electron configuration, 
However, it is not an 
alkali metal.

1s1.

*
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8-12 Electron Configurations and the Periodic Table 345

Another point to notice from Table 8.2 is that the electron configuration con-
sists of a noble-gas core corresponding to the noble gas from the previous
period plus the additional electrons required to satisfy the atomic number.
Recognizing this and dividing the periodic table into blocks can simplify the
task of assigning electron configurations. For example, strontium is in group 2,
the second s-block group, so that its valence-shell configuration is since it is
in the fifth period. The remaining electrons are in the krypton core configura-
tion (the noble gas in the previous period); thus the electron configuration 
of Sr is

For the p-block elements in groups 13 to 18, the number of valence electrons
is from 1 to 6. For example, aluminum is in period 3 and group 13, its valence-
shell electron configuration is We use since Al is in the third
period and we have to accommodate three electrons after the neon core, which
contains 10 electrons. Thus the electron configuration of Al is

Al: 3Ne43s23p1

n = 33s23p1.

Sr: 3Kr45s2

5s2

 FIGURE 8-38
Electron configurations and the periodic table

To use this figure as a guide to the aufbau process, locate the position of an element in
the table. Subshells listed ahead of this position are filled. For example, germanium

is located in group 14 of the blue row. The filled subshells are 
and At a second electron has entered the 4p

subshell. The electron configuration of Ge is Exceptions to the orderly
filling of subshells suggested here are found among a few of the d-block and some of
the f-block elements.

3Ar43d104s24p2.

1Z = 322,3d10.2p6, 3s2, 3p6, 4s2,
1s2, 2s2,4p1Z = 322
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346 Chapter 8 Electrons in Atoms

Gallium is also in group 13, but in period 4. Its valence-shell electron con-
figuration is To write the electron configuration of Ga, we can start
with the electron configuration of the noble gas that closes the third period,
argon, and we add to it the subshells that fill in the fourth period: and

The subshell must fill with 10 electrons before the subshell begins to
fill. Consequently, the electron configuration of gallium must be

Thallium is in group 13 and period 6. Its valence-shell electron configura-
tion is Again, we indicate the electron configuration of the noble gas
that closes the fifth period as a core, and add the subshells that fill in the sixth
period: and 

The elements in group 13 have the common valence configuration 
again illustrating the repeating pattern of valence electron configurations down
a group, which is the basis of the similar chemical properties of the elements
within a group of the periodic table.

The transition elements correspond to the d block, and their electron config-
urations are established in a similar manner. To write the electron configura-
tion of a transition element, start with the electron configuration of the noble
gas that closes the prior period and add the subshells that fill in the period of
the transition element being considered. The s subshell fills immediately after
the preceding noble gas; most transition metal atoms have two electrons in the
s subshell of the valence shell, but some have only one. Thus, vanadium

which has two valence electrons in the subshell and core elec-
trons in the configuration of the noble gas argon, must have three electrons

Chromium as we have seen before, has only one valence electron
in the subshell and core electrons in the argon configuration. Consequently
it must have five electrons 

Copper also has only one valence electron in the subshell in
addition to its argon core, so the copper atom must have ten electrons

Chromium and copper are two exceptions to the straightforward filling of
atomic subshells in the first d-block row. An examination of the electron con-
figurations of the heavier elements (Appendix D) will reveal that there are
other special cases that are not easily explained for example, gadolinium has
the configuration Examples 8-14 through 8-16 provide several
more illustrations of the assignment of electron configurations using the ideas
presented here.

3Xe44f76d16s2.

Cu: 3Ar43d104s1

11 + 18 + 10 = 292.
3d

4s1Z = 292

Cr: 3Ar43d54s1

11 + 18 + 5 = 242.3d
4s

1Z = 242,

V: 3Ar43d34s2

12 + 18 + 3 = 232.
3d

4s1Z = 232,

ns2np1,

Tl: 3Xe44f145d106s26p1

6p.6s, 4f, 5d,

6s26p1.

Ga: 3Ar43d104s24p1

4p3d4p.
4s, 3d,

4s24p1.

The electron configurations
for the lower d- and f-block
elements contain many
exceptions that need not be
memorized. Few people know
all of them. Anyone needing
any of these configurations
can look them up when
needed in tables, such as in
Appendix D.

*

8-8 CONCEPT ASSESSMENT

The following orbital diagram represents an excited state of an atom. Identify
the atom and give the orbital diagram corresponding to its ground state 
orbital diagram.

[Ar]

4p4s 3d

M08_PETR4521_10_SE_C08.QXD  1/16/10  3:04 AM  Page 346
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EXAMPLE 8-14 Using spdf Notation for an Electron Configuration

(a) Identify the element having the electron configuration

(b) Write the electron configuration of arsenic.

Analyze
The total number of electrons in a neutral atomic species is equal to the atomic number of the element. All elec-
trons must be accounted for in an electron configuration.

Solve
(a) Add the superscript numerals to obtain the atomic number 17. The element with

this atomic number is chlorine.

(b) Arsenic is in period 4 and group 15. Its valence-shell electron configuration is The 
noble gas that closes the third period is Ar and the subshells that fill in the fourth period are

and in that order. Note that we account for 33 electrons in the configuration

Assess
As long as we count the number of electrons accurately and know the order of the orbitals, we should be able
to interpret or write the correct electronic configuration.

PRACTICE EXAMPLE A: Identify the element having the electron configuration 

PRACTICE EXAMPLE B: Use spdf notation to show the electron configuration of iodine. How many electrons does
the I atom have in its subshell? How many unpaired electrons are there in an I atom?3d

1s22s22p63s23p63d24s2.

As: 3Ar43d104s24p3

4p,4s, 3d,
1Z = 182,

4s24p3.1Z = 332

12 + 2 + 6 + 2 + 52

1s22s22p63s23p5

EXAMPLE 8-15 Representing Electron Configurations

Write (a) the electron configuration of mercury, and (b) an orbital diagram for the electron configuration of tin.

Analyze
To write the electronic configuration, we locate the element on the periodic table and then ascertain which sub-
shells are filled. We must be careful, with high-atomic-number elements, to take into account the lanthanide
and actinide elements.

Solve
(a) Mercury, in period 6 and group 12, is the transition element at the end of the third transition series, in

which the subshell fills The noble gas that closes period 5 is xenon, and the lanthanide series
intervenes between xenon and mercury, in which the subshell fills When we put all these
facts together, we conclude that the electron configuration of mercury is

(b) Tin is in period 5 and group 14. Its valence-shell electron configuration is The noble gas that
closes the fourth period is Kr and the subshells that fill in the fifth period are and 
Note that all subshells are filled in the orbital diagram except for Two of the orbitals are occupied
by single electrons with parallel spins; one orbital remains empty.

Assess
Using the periodic table helps when writing electronic configurations.

PRACTICE EXAMPLE A: Represent the electron configuration of iron with an orbital diagram.

PRACTICE EXAMPLE B: Represent the electron configuration of bismuth with an orbital diagram.

5p
5p5p.

5p.5s, 4d,1Z = 362,
5s25p2.

3Xe44f145d106s2

14f14
2.4f

15d10
2.5d

Sn:  [Kr]

4d 5s 5p
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348 Chapter 8 Electrons in Atoms

EXAMPLE 8-16 Relating Electron Configurations to the Periodic Table

Indicate the number of (a) valence electrons in an atom of bromine; (b) electrons in an atom of tellurium; 
(c) unpaired electrons in an atom of indium; (d) and electrons in a silver atom.

Analyze
Determine the atomic number and the periodic table location of each element. Then, explain the significance of
its location.

Solve
(a) Bromine is in group 17. There are seven outer-shell, or valence, electrons in all atoms in this

group.

(b) Tellurium is in period 5 and group 16. There are six outer-shell electrons, two of them are s,

and the other four are p. The valence-shell electron configuration of tellurium is the tellurium
atom has four electrons.

(c) Indium is in period 5 and group 13. The electron configuration of its inner shells is 
All the electrons in this inner-shell configuration are paired. The valence-shell electron configuration is

The two electrons are paired, and the electron is unpaired. The In atom has one unpaired
electron.

(d) Ag is in period 5 and group 11. The noble gas that closes period 4 is krypton, and the subshell 

fills There is one electron in the orbital; thus the electron configuration of silver is

There are ten electrons and ten electrons in a silver atom.

Assess
Again, the relationship between the periodic table and electronic configurations is evident.

PRACTICE EXAMPLE A: For an atom of Sn, indicate the number of (a) electronic shells that are either filled or
partially filled; (b) electrons; (c) electrons; and (d) unpaired electrons.

PRACTICE EXAMPLE B: Indicate the number of (a) electrons in Y atoms; (b) electrons in Ge atoms; and 
(c) unpaired electrons in Au atoms.

4p3d

5d3p

4d3d

Ag: 3Kr44d105s1

5s41d10
2.

4d1Z = 472

5p5s5s25p1.

3Kr44d10.1Z = 492

5p
5s25p4;

1Z = 522

1Z = 352

4d3d
5p

Summary

8-1 Electromagnetic Radiation Electromagnetic
radiation is a type of energy transmission in the form of a
wave. The waves of electromagnetic radiation are charac-
terized by an amplitude, the maximum height of wave
crests and maximum depth of wave troughs, a wavelength,

the distance between wave crests and frequency, 
which signifies how often the fluctuations occur. Frequency
is measured in hertz, Hz (cycles per second). Wavelength
and frequency are related by the equation (8.1): 
where c is the speed of light. The wave character of electro-
magnetic radiation means that the waves can be dispersed
into individual components of different wavelengths, a

c = ln,

n,l,

diffraction pattern, by striking a closely grooved surface
(Fig. 8-4).

8-2 Atomic Spectra A rainbow results from the dis-
persion of all the wavelength components of visible light by
a prism or raindrops; it is an example of a continuous spec-
trum (Fig. 8-7). The spectra produced by light emitted from
excited atoms and ions are called atomic spectra or line
spectra, because only certain frequencies are observed.

8-3 Quantum Theory The study of electromagnetic
radiation emitted from hot objects led to Planck s theory,
which postulates that quantities of energy can have only

www.masteringchemistry.com

Laser devices are in use everywhere in compact disc players, bar-code scanners, laboratory
instruments, and in cosmetic, dental, and surgical procedures. Lasers produce light with
highly desirable properties by a process called stimulated emission. For a discussion of 
how lasers work, go to the Focus On feature for Chapter 8, Helium-Neon Lasers, on the
MasteringChemistry site. 
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Integrative Example 349

certain discrete values, with the smallest unit of energy
being that of a quantum. The energy of a quantum is
given by equation (8.3): where h is Planck s con-
stant. Einstein s interpretation of the photoelectric
effect the ability of light to eject electrons when striking
certain surfaces (Fig. 8-12) led to a new interpretation of
electromagnetic radiation: Light has a particle-like nature
in addition to its wave-like properties. Light particles are
called photons. The energy of a photon is related to 
the frequency of the radiation by 

8-4 The Bohr Atom The first attempt to explain
atomic (line) spectra was made by Niels Bohr who postu-
lated that an electron in a hydrogen atom exists in a circu-
lar orbit designated by a quantum number, n, that
describes the energy of the electron in the orbit. The state
of the electron with the lowest quantum number, is
called the ground state. An excited state of a hydrogen
atom corresponds to those states with The Bohr
theory also provided a means for constructing an energy-
level diagram (Fig. 8-14) so that emission spectra could be
understood.

8-5 Two Ideas Leading to a New Quantum
Mechanics Louis de Broglie postulated a wave particle
duality in which particles of matter such as protons and
electrons would at times display wave-like properties
(equation 8.10). Because of an inherent uncertainty of 
the position and momentum of a wave-like particle,
Heisenberg postulated that we cannot simultaneously
know a subatomic particle s precise momentum and its
position, a proposition referred to as the Heisenberg
uncertainty principle (equation 8.11).

8-6 Wave Mechanics The application of the concept
of wave particle duality requires that we view the elec-
tron in a system through a wave function that corre-
sponds to a standing wave within the boundary of the
system (Figs. 8-18 and 8-19). Application of these ideas to
a particle in a one-dimensional box shows that at the low-
est energy level the energy of the particle is nonzero that
is, the system has a zero-point energy. The solution of the
Schrödinger equation for the hydrogen atom provides
wave functions called orbitals, which are the product of
an angular wave function, and a radial wave
function, 

8-7 Quantum Numbers and Electron Orbitals
The three quantum numbers arising from the Schrödinger
wave equation are the principal quantum number, n, the
orbital angular momentum quantum number, and 
the magnetic quantum number, All orbitals with the
same value of n are in the same principal electronic shell
(principal level), and all orbitals with the same values of 

m/.
/,

R1r2.
Y1u, f2,

n 7 1.

n = 1,

Ephoton = hn.

E = hn,

n and are in the same subshell (sublevel). The orbitals
with different values of (0, 1, 2, 3, and so on) are desig-
nated (Fig. 8-23). Orbitals in the same subshell of a
hydrogen-like species have the same energy and are said
to be degenerate.

8-8 Interpreting and Representing the Orbitals
of the Hydrogen Atom Interpreting the solutions to
the Schrödinger equation for the hydrogen atom leads to a
description of the shapes of the electron probability distri-
butions for electrons in the and d orbitals. The number
of nodes in an orbital increases as n increases.
Nodes are where the wave function changes sign.

8-9 Electron Spin: A Fourth Quantum Number
Stern and Gerlach demonstrated that electrons possess a
quality called electron spin (Figs. 8-32 and 8-33). The elec-
tron spin quantum number, takes the value 

8-10 Multielectron Atoms In multielectron atoms,
orbitals with different values of are not degenerate. The
loss of degeneracy within a principal shell is a result of the
different effective nuclear charge, , experienced by
electrons in different subshells.

8-11 Electron Configurations Electron configura-
tion describes how the electrons are distributed among the
various orbitals in principal shells and subshells of an
atom. Electrons fill orbitals from the lowest energy to the
highest (Fig. 8-37), ensuring that the energy of the atom is
at a minimum. The Pauli exclusion principle states that a
maximum of two electrons may occupy an orbital. Hund s
rule says that when degenerate orbitals are available, elec-
trons initially occupy these orbitals singly. Electron config-
urations are represented by either expanded or condensed
spdf notation or an orbital diagram (page 339). The
aufbau process is used to assign electron configurations to
the elements of the periodic table. Electrons added to the
shell of highest quantum number in the aufbau process are
called valence electrons.

8-12 Electron Configurations and the Periodic
Table Elements in the same group of the periodic table
have similar electron configurations. Groups 1 and 2 cor-
respond to the s block with filled or partially filled
valence-shell s orbitals. Groups 13 through 18 correspond
to the p block with filled or partially filled valence-shell p
orbitals. The d block corresponds to groups 3 through 12
as the energy level is being filled that is, having
filled or partially filled d orbitals. In the f-block elements,
also called the lanthanides and actinides, the shell
fills with electrons; that is, they have filled or partially
filled orbitals.f

n - 2

n - 1

Zeff

/

+
1
2 or -  

1
2.ms,

1n - 12
s, p,

s, p, d, f
/

/

Integrative Example

Microwave ovens have become increasingly popular in kitchens around the world. They are also useful in the chemical
laboratory, particularly in drying samples for chemical analysis. A typical microwave oven uses microwave radiation
with a wavelength of 12.2 cm.

Are there any electronic transitions in the hydrogen atom that could conceivably produce microwave radiation of wave-
length 12.2 cm? Estimate the principal quantum levels between which the transition occurs.
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350 Chapter 8 Electrons in Atoms

Analyze
Use the wavelength of microwaves to calculate the frequency of the radiation. Calculate the energy of the photon that has
this frequency. Estimate where in the emission spectrum for a hydrogen atom such a photon emission might be found, by
using equation (8.6).

Solve

This provides closer agreement. The value of the
principal quantum number is n = 138.

1. Calculate the frequency of the microwave radia-
tion. Microwaves are a form of electromagnetic
radiation and thus travel at the speed of light,

Convert the wavelength to
meters, and then use the equation
2.998 * 108

 m s-1.
 n =

2.998 * 108
 m s-1

12.2 cm * 1 m>100 cm
= 2.46 * 109

 Hz

 n = c>l

2. Calculate the energy associated with one photon
of the microwave radiation. This is a direct appli-
cation of Planck s equation.

 = 1.63 * 10-24
 J

 E = hn = 6.626 * 10-34
 J s * 2.46 * 109

 s-1

3. Determine whether there are any electronic tran-
sitions in the hydrogen atom with an energy per
photon of Let the principal quan-
tum number of the final state be n, and that
of the initial state is then Substitute
these two values into equation (8.9).

n + 1.1ni2

1nf2

1.63 * 10-24
 J.

Ephoton = ¢E = 2.179 * 10-18
 Ja

1

1n + 122
-

1

n
2
b

Solving for n

 = -2.179 * 10-18
 Ja

2n + 1

n
2
1n + 122

b

 Ephoton = ¢E = 2.179 * 10-18
 Ja

n
2
- 1n + 122

n
2
1n + 122

b

4. The negative sign indicates that a photon is emit-
ted and now can be ignored. Substitute the value
for the energy of the photon and rearrange the
equation

1.63 * 10-24
 J

2.179 * 10-18
 J
= 7.48 * 10-7

= a
2n + 1

n
2
1n + 122

b

Ephoton = 1.63 * 10-24
 J = 2.179 * 10-18

 Ja
2n + 1

n
2
1n + 122

b

5. Look at Figure 8-14, the energy-level diagram for
the Bohr hydrogen atom. Energy differences
between the low-lying levels are of the order 
to These are orders of magnitude ( to

) greater than the energy per photon of
from part 2. Note, however, that the

energy differences become progressively smaller
for high-numbered orbits. As n approaches 
the energy differences approach zero, and some
transitions between high-numbered orbits should
correspond to microwave radiation. Thus we
expect n to be large, so that to a good approxima-
tion we can neglect one with respect to n

and write

q ,

1.63 * 10-24
 J

105
 times

10410-20
 J.

10-19

7.48 * 10-7
= a

2n + 1

n
2
1n + 122

b M a
2n

n
2
n

2
b M a

2

n
3
b

Solving for n n M a
2

7.48 * 10-7
b

1>3

M 138.8

The agreement is not very good, so let s try
n = 138 7.48 * 10-7

=
2n + 1

n
2
1n + 122

=
211382 + 1

1382
1138 + 122

= 7.53 * 10-7

6. We can check this result by substituting this
value of into the exact expressionn = 139 7.48 * 10-7

=
2n + 1

n
2
1n + 122

=
211392 + 1

1392
1139 + 122

= 7.37 * 10-7

Assess
Using equation (8.6) we have shown that the emission of a photon for the deexcitation of an electron from to

produces a wavelength for that photon in the microwave region. However, we might question whether the
state is still a bound state or whether the energy required to create this state causes ionization (see Exercise 106).n = 139

n = 138
n = 139
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9

C
hemists value the periodic table as a means of organizing their
field, and they would have continued to use it even if they had
never figured out why it works. The underlying rationale of

the periodic table was discovered about 50 years after the table was
proposed.

The basis of the periodic table is the electron configurations of the ele-
ments, a topic we studied in Chapter 8. In this chapter, we will use the
table as a backdrop for a discussion of some properties of elements,
including atomic radii, ionization energies, and electron affinities. These
atomic properties also arise in the discussion of chemical bonding in the
following two chapters, and the periodic table itself will be our indispens-
able guide throughout much of the remainder of the text.

The Periodic Table and
Some Atomic Properties

A scanning tunneling microscope image of 48 iron atoms adsorbed onto a surface of
copper atoms. The iron atoms were moved into position with the tip of the scanning
tunneling microscope in order to create a barrier that forced some electrons of the
copper atoms into a quantum state seen here as circular rings of electron density.
The colors are from the computer rendering of the image. In this chapter we discuss
the periodic table and the properties of atoms and ions.
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9-1 Classifying the Elements: The Periodic
Law and the Periodic Table

In 1869, Dmitri Mendeleev and Lothar Meyer independently proposed the
periodic law:

When the elements are arranged in order of increasing atomic mass, certain sets
of properties recur periodically.

Meyer based his periodic law on the property called atomic volume the
atomic mass of an element divided by the density of its solid form. We now
just call this property molar volume.

(9.1)

Meyer presented his results as a graph of atomic volume against atomic mass.
Now it is customary to plot his results as molar volume against atomic num-
ber, as seen in Figure 9-1. Notice how high atomic volumes recur periodically
for the alkali metals Li, Na, K, Rb, and Cs. Later, Meyer examined other physi-
cal properties of the elements and their compounds, such as hardness, com-
pressibility, and boiling points, and found that these also vary periodically.

Mendeleev s Periodic Table
As previously described, the periodic table is a tabular arrangement of the ele-
ments that groups similar elements together. Mendeleev s work attracted
more attention than Meyer s for two reasons: He left blank spaces in his table
for undiscovered elements, and he corrected some atomic mass values. The
blanks in his table came at atomic masses 44, 68, 72, and 100 for the elements
we now know as scandium, gallium, germanium, and technetium. Two of the
atomic mass values he corrected were those of indium and uranium.

atomic 1molar2 volume 1cm3
>mol2 = molar mass 1g>mol2 * 1>d 1cm3

>g2
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 FIGURE 9-1
An illustration of the periodic law variation of atomic volume with
atomic number
This adaptation of Meyer s 1870 graph plots atomic volumes against atomic numbers.
Of course, a number of elements, such as the noble gases, were undiscovered in
Meyer s time. The graph shows peaks at the alkali metals (Li, Na, K, and so on).
Nonmetals fall on the ascending portions of the curve and metals at the peaks, 
on the descending portions, and in the valleys.
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362 Chapter 9 The Periodic Table and Some Atomic Properties

In Mendeleev s table, similar elements fall in vertical groups, and the prop-
erties of the elements change gradually from top to bottom in the group. As an
example, we have seen that the alkali metals (Mendeleev s group I) have high
molar volumes (Fig. 9-1). They also have low melting points, which decrease
in the order

In their compounds, the alkali metals exhibit the oxidation state forming
ionic compounds, such as and so on.

Discovery of New Elements
Three elements predicted by Mendeleev were discovered shortly after the appear-
ance of his 1871 periodic table (gallium, 1875; scandium, 1879; germanium, 1886).
Table 9.1 illustrates how closely Mendeleev s predictions for eka-silicon agree
with the observed properties of the element germanium, discovered in 1886.
Often, new ideas in science take hold slowly, but the success of Mendeleev s
predictions stimulated chemists to adopt his table fairly quickly.

NaCl, KBr, CsI, Li2O,
+1,

Li 1174 °C2 7 Na 197.8 °C2 7 K 163.7 °C2 7 Rb 138.9 °C2 7 Cs 128.5 °C2

Other properties of the
alkali metals are discussed in
Section 9-7.

The term eka is derived
from Sanskrit and means

first.  That is, eka-silicon
means, literally, first comes
silicon  (and then comes the
unknown element).

 Dmitri Mendeleev (1834 1907)

Mendeleev s discovery of the periodic table came from his
attempts to systematize properties of the elements for
presentation in a chemistry textbook. His highly influential
book went through eight editions in his lifetime and five more
after his death.

In his periodic table Mendeleev arranged the elements into
eight groups (Gruppe) and twelve rows (Reihen). The formulas
are written as Mendeleev wrote them. and so on, are
formulas of the element oxides (such as 

and so forth, are formulas of the element hydrides (such
as ).CH4, NH3, Á
RH3,

Li2O, MgO, Á ); RH4,
R2O, RO,

Gruppe I.

Reihen

1 H * 1

Li * 7 Be * 9,4 B * 11 C * 12 N * 14 O * 16 F * 19 

K * 39 Ca * 40  * 44 Ti * 48 V * 51 Cr * 52 Mn * 55 Fe * 56, Co * 59,

   Ni * 59, Cu * 63. 

Na * 23 Mg * 24 Al * 27,3 Si * 28 P * 31 S * 32 Cl * 35,5 

Rb * 85 Sr * 87 ?Yt * 88 Zr * 90 Nb * 94 Mo * 96  * 100 Ru * 104, Rh * 104,

 Pd * 106, Ag * 108 

(Cu * 63) Zn * 65  * 68  * 72 As * 75 Se * 78 Br * 80

Cs * 133 Ba * 137 ?Di * 138 ?Ce * 140

( )

Os * 195, Ir * 197,

 Pt * 198, Au * 199 

(Ag * 108) Cd * 112 In * 113 Sn * 118 Sb * 122

(Au * 199) Hg * 200 Tl * 204 Pb * 207 Bi * 208

Th * 231 U * 240

Te * 125

?Er * 178 ?La * 180 Ta * 182 W * 184

J * 127

RH4

RO2
RH3

R2O5
RH2

RO3
RH

R2O7 RO4R2O3ROR2O

2

3

4

5

6

7
8

9

10

11

12

Gruppe II. Gruppe III. Gruppe IV. Gruppe V. Gruppe VI. Gruppe VII. Gruppe VIII.

TABLE 9.1 Properties of Germanium: Predicted and Observed

Property
Predicted 
Eka-silicon (1871)

Observed 
Germanium (1886)

Atomic mass 72 72.6
Density, g>cm3 5.5 5.47
Color dirty gray grayish white
Density of oxide, g>cm3 EsO2: 4.7 GeO2: 4.703
Boiling point of chloride below 100 °CEsCl4: GeCl4: 86 °C
Density of chloride, g>cm3 EsCl4: 1.9 GeCl4: 1.887
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One group of elements that Mendeleev did not anticipate was the noble
gases. He left no blanks for them. William Ramsay, their discoverer, proposed
placing them in a separate group of the table. Because argon, the first noble
gas discovered (1894), had an atomic mass greater than that of chlorine and
comparable to that of potassium, Ramsay placed the new group, which
he called group 0, between the halogen elements (group VII) and the alkali
metals (group I).

Atomic Number as the Basis for the Periodic Law
Mendeleev placed certain elements out of the order of increasing atomic
mass to get them into the proper groups of his periodic table. He assumed
this was because of errors in atomic masses. With improved methods of
determining atomic masses and with the discovery of argon (group 0, atomic
mass 39.9), which was placed ahead of potassium (group I, atomic mass
39.1), it became clear that a few elements might always remain out of
order.  At the time, these out-of-order placements were justified by chemical
evidence. Elements were placed in the groups that their chemical behavior
dictated. There was no theoretical explanation for this reordering. Matters
changed in 1913 as a result of some research by Henry G. J. Moseley on the
X-ray spectra of the elements.

As we learned in Chapter 2, X-rays are a high-frequency form of electro-
magnetic radiation produced when a cathode-ray (electron) beam strikes the
anode of a cathode-ray tube (see Figure 9-2a). The anode is called the target.
Moseley was familiar with Bohr s atomic model, and explained X-ray emis-
sion in the following way. If the bombarding electrons have sufficient energy,
they can eject electrons from the inner orbitals of target metal atoms. Electrons
from higher orbitals then drop down to fill the vacancies, emitting X-ray pho-
tons with energies corresponding to the difference in energy between the orig-
inating level and the vacancy level (see Figure 8-13). Moseley reasoned that
because the energies of electron orbitals depend on the nuclear charge, the fre-
quencies of emitted X-rays should depend on the nuclear charges of atoms
in the target. Using techniques newly developed by the father son team of
W. Henry Bragg and W. Lawrence Bragg, Moseley obtained photographic
images of X-ray spectra and assigned frequencies to the spectral lines. His
spectra for the elements from Ca to Zn are reproduced in Figure 9-2(b).

Moseley was able to correlate X-ray frequencies to numbers equal to the
nuclear charges and corresponding to the positions of elements in
Mendeleev s periodic table. For example, aluminum, the thirteenth element in
the table, was assigned an atomic number of 13. Moseley s equation is

where is the X-ray frequency, Z is the atomic number, and 
A and b are constants. Moseley used this relationship to predict three new ele-
ments ( and 75), which were discovered in 1937, 1945, and 1925,
respectively. Also, he proved that in the portion of the periodic table with
which he worked (from to ), there could be no additional new
elements beyond those three. All available atomic numbers had been
assigned. From the standpoint of Moseley s work, then, we should restate the
periodic law.

Z = 79Z = 13

Z = 43, 61,

nn = A1Z - b2
2,

 Henry G. J. Moseley
(1887 1915)

Moseley was one of a group 
of brilliant scientists whose
careers were launched under
Ernest Rutherford. He was
tragically killed at Gallipoli, in
Turkey, during World War I.

Description of a Modern Periodic Table: The Long Form
Mendeleev s periodic table consisted of 8 groups, but most modern periodic
tables are arranged in 18 groups of elements. Let us briefly review the descrip-
tion of the periodic table given in Section 2-6.

Similar properties recur periodically when elements are arranged
according to increasing atomic number.
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364 Chapter 9 The Periodic Table and Some Atomic Properties

 FIGURE 9-2
Schematic of an X-ray tube and Moseley s X-ray spectra of several elements
(a) A heated filament emits electrons by a process called thermionic emission. The
electrons are accelerated by a high voltage, and collide with the metal target. The highly
energetic electrons ionize electrons from the inner shells of the metal atoms of the target.
Subsequently, electrons from higher orbitals drop down to occupy the vacancies and in
doing so, emit X-ray photons that correspond to the energy difference between the two
orbitals. (b) In this photograph from Moseleys 1913 paper, you can see two lines for each
element, beginning with Ca at the top. With each successive element, the lines are
displaced to the left, the direction of increasing X-ray frequency in these experiments.
Where more than two lines appear, the sample contained one or more other elements,
or impurities. Notice, for example, that one line in the Co spectrum matches a line in the
Fe spectrum, and another matches a line in the Ni spectrum. Brass, which is an alloy of
copper and zinc, shows two lines for Cu and two for Zn.

(b)(a)

Evacuated tube

Current

Target

Cathode

X-rays

Electrons

In the periodic table (see inside front cover), the vertical groups bring
together elements with similar properties. The horizontal periods of the table
are arranged in order of increasing atomic number from left to right. The
groups are numbered at the top, and the periods at the extreme left. The first
two groups the s block and the last six groups the p block together con-
stitute the main-group elements. Because they come between the s block and the
p block, the d block elements are known as the transition elements. The f block
elements, sometimes called the inner transition elements, would extend the
table to a width of 32 members if incorporated in the main body of the table.
The table would generally be too wide to fit on a printed page, and so the 
f block elements are extracted from the table and placed at the bottom. 
The 15 elements following barium are called the lanthanides, and the
15 following radon are called the actinides.

9-2 Metals and Nonmetals and Their Ions
In Section 2-6, we established two categories of elements, metals and nonmetals,
and described them in terms of physical properties. Most metals are good con-
ductors of heat and electricity, are malleable and ductile, and have moderate
to high melting points. In general, nonmetals are nonconductors of heat and

1Z = 882
1Z = 562
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H
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 Metals tend to lose
electrons to attain noble gas
electron configurations.

electricity and are nonmalleable (brittle) solids, though a number of non-
metals are gases at room temperature.

Through the color scheme of the periodic table on the inside front cover,
we see that the majority of the elements are metals (orange) and that non-
metals (blue) are confined to the right side of the table. The noble gases (pur-
ple) are treated as a special group of nonmetals. Metals and nonmetals are
often separated by a stairstep diagonal line, and several elements near this
line are often called metalloids (green). Metalloids are elements that look like
metals and in some ways behave like metals but also have some nonmetallic
properties.

In the original periodic table, the positions of the elements were based on
readily observable physical and chemical properties. In Chapter 8, we learned
of the close correlation between electron configurations and the positions of
the elements in the table. Thus, it appears that the physical and chemical prop-
erties of an element are determined largely by its electron configuration,
particularly that of the valence (outermost) electronic shell. Adjacent members
of a series of main-group elements in the same period (such as P, S, and Cl)
have significantly different properties because they differ in their valence-
electron configurations. Within a transition series, differences in electron
configurations are mostly in inner shells, and so a transition element has some
similarities to neighboring transition elements in the same period. In particu-
lar we find many similar properties for adjacent members of the same period
within the block. In fact, the strong similarities among the lanthanide
elements presented a particular challenge to the nineteenth-century chemists
who tried to separate and identify them.

Let s now briefly explore a few of the links between electron configurations
and some other observations about the elements, starting with the noble gases.

Noble Gases

Atoms of the noble gases have the maximum number of electrons permitted in
the valence shell of an atom, two in helium and eight in the other noble
gas atoms These electron configurations are very difficult to alter
and seem to confer a high degree of chemical inertness to the noble gases. It is
interesting to note, then, that the s-block metals, together with Al in group 13,
tend to lose enough electrons to acquire the electron configurations of the
noble gases. Conversely, nonmetals tend to gain enough electrons to achieve
the same configurations.

Main-Group Metal Ions

The atoms of elements of groups 1 and 2 the most active metals have elec-
tron configurations that differ from those of the noble gas of the preceding
period by only one and two electrons in the s orbital of a new electron shell. If
a K atom is stripped of its outer-shell electron, it becomes the positive ion

with the electron configuration [Ar]. A Ca atom acquires the [Ar] configura-
tion following the removal of two electrons.

Although metal atoms do not lose electrons spontaneously, the energy required
to bring about ionization is often provided by other processes occurring at
the same time (such as an attraction between positive and negative ions).
Aluminum is the only p-block metal that forms an ion with a noble gas electron
configuration This is because all other p-block elements would have to
remove electrons to attain the electron configuration of the previous noble
gas. The electron configurations of the other p-block metal ions are summarized
in Table 9.2.

10 d

Al 3+.

 Ca 13Ar44s2
2 ¡ Ca2+

13Ar42 + 2 e-
 K 13Ar44s1

2 ¡ K+ 13Ar42 + e-

K+

1ns
2
np

6
2.

11s2
2

f

Metalloids (such as silicon)
are semiconductors and
materials composed of metal-
loids play an important role
in microcomputer technology.

Compounds containing
radon, xenon and krypton
have been prepared. Recently,
compounds containing argon
have also been prepared.
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366 Chapter 9 The Periodic Table and Some Atomic Properties

Main-Group Nonmetal Ions
The atoms of groups 17 and 16 the most active nonmetals have one and
two electrons fewer than the noble gas at the end of the period. Groups 17 and
16 atoms can acquire the electron configurations of noble gas atoms by gaining
the appropriate numbers of electrons.

In most cases, a nonmetal atom will gain a single electron spontaneously,
but energy is required to force it to accept more than one. The necessary energy
is often supplied by other processes that occur simultaneously (such as an
attraction between positive and negative ions). Nonmetal ions with a charge of

are rare. However, some metal nitrides containing the nitride ion, and
some metal phosphides containing the phosphide ion, are known.

Transition Metal Ions
In the aufbau process, the ns subshell fills before electrons enter the 
subshell (page 340), but the energy levels of these two subshells are nearly
the same (Fig. 8-36). Thus, it is not surprising that when transition metal
atoms ionize, the ns subshell is emptied. For example, the electron
configuration of Ti is and that of is Moreover, in
some cases one or more electrons might be lost together with the 
ns electrons. This happens in the formation of which has the electron
configuration [Ar].

A few transition metal atoms acquire noble-gas electron configurations
when forming cations, as do Sc in and Ti in but most transition
metal atoms do not (see Table 9.2). An iron atom does not acquire a noble-gas
electron configuration when it loses its electrons to form the ion 

nor does it with the loss of an additional electron to form the ion 

The subshell in is half-filled, a fact that helps to account for the
observed ease of oxidation of iron(II) to iron(III) compounds. Electron config-
urations with half-filled or filled d or f subshells have a special stability, and a
number of transition metal ions have such configurations.

Fe3+3d

Fe 13Ar43d64s2
2 ¡ Fe3+

 13Ar43d5
2 + 3 e-

Fe3+.3d

Fe 13Ar43d64s2
2 ¡ Fe2+

 13Ar43d6
2 + 2 e-

Fe2+,4s2

Ti4+,Sc3+

Ti4+,
1n - 12d

3Ar43d2.Ti2+
3Ar43d24s2,

1n - 12d

P3-,
N3-,3-

 S 13Ne43s23p4
2 + 2 e- ¡ S2-

 13Ar42

 Cl 13Ne43s23p5
2 + e- ¡ Cl- 13Ar42

A useful mnemonic is that
the electron configuration of
a cation can be obtained from
the electron configuration of
the parent atom by removing
those electrons in orbitals
with the highest quantum
number first.

TABLE 9.2 Electron Configurations of Some Metal Ionsa

Noble Gas Pseudo-Noble Gas b c18 * 2 Other

Li+ Be2+ Ga3+ In+ Cr2+, Cr3+

Na+ Mg2+ Tl3+ Tl+ Mn2+, Fe2+

K+ Ca2+ Cu+ Sn2+ Fe3+, Co2+

Rb+ Sr2+ Ag+, Au+ Pb2+ Ni2+, Cu2+

Cs+ Ba2+ Zn2+ Sb3+

Fr+ Ra2+ Bi3+

Al3+

aMain-group metal ions are printed in black and transition metal ions in blue.
bIn the configuration labeled pseudo-noble gas,  all electrons of the outermost shell have
been lost. The next-to-outermost electron shell of the atom becomes the outermost shell of
the ion and contains 18 electrons, for example, 
cIn the configuration labeled  all outer-shell electrons except the two s electrons are
lost, producing an ion with 18 electrons in the next-to-outermost shell and 2 electrons in the
outermost, for example, Sn2+: 3Ar43d104s24p64d105s2.

18 + 2
Ga3+: 3Ne43s23p63d10.
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 Nonmetals tend to gain
electrons to attain noble-gas
electron configurations.
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Hydrogen
Although all the other elements have a definite place in the periodic table,
hydrogen does not. Its uniqueness stems from the fact that its atoms have only
one electron, in the configuration . This single electron is the reason that we
put hydrogen in group 1, even though we classify it as a nonmetal. Hydrogen
does appear to become metallic when subjected to pressures of about 2 million
bar, but these are hardly ordinary laboratory conditions. Because hydrogen,
like the halogens, is one electron short of having a noble-gas electron configu-
ration, it is sometimes placed in group 17; however, hydrogen does not resem-
ble the halogens very much. For example, and are excellent oxidizing
agents, but is a reducing agent. Still another alternative places hydrogen by
itself at the top of the periodic table and near the center.

H2

Cl2F2

1s1

9-1 CONCEPT ASSESSMENT

On the blank periodic table in the margin, indicate where elements that satisfy
the following descriptions occur.

(a) A noble gas having the same electron configuration as the cation

(b) An anion of a nonmetal with a charge of that has a noble-gas electron
configuration

(c) A transition metal ion with a charge of and no valence shell s and 
p electrons

2+

3-

Na+

9-3 Sizes of Atoms and Ions
In earlier chapters we discovered the importance of atomic masses in matters
relating to stoichiometry. To understand certain physical and chemical pro-
perties, we need to know something about atomic sizes. In this section we
describe atomic radius, the first of a group of atomic properties that we will
examine in this chapter.

Atomic Radius
Unfortunately, atomic radius is hard to define. The probability of finding an
electron decreases with increasing distance from the nucleus, but nowhere
does the probability fall to zero, so there is no precise outer boundary to an
atom. We might describe an effective atomic radius as, say, the distance from
the nucleus within which 95% of all the electron charge density is found, but
in fact, all that we can measure is the distance between the nuclei of adjacent
atoms (internuclear distance). Even though it varies, depending on whether
atoms are chemically bonded or merely in contact without forming a bond, we
define atomic radius in terms of internuclear distance.

Because we are primarily interested in bonded atoms, we will emphasize an
atomic radius based on the distance between the nuclei of two atoms joined by
a chemical bond. The covalent radius is one-half the distance between the
nuclei of two identical atoms joined by a single covalent bond. The ionic

radius is based on the distance between the nuclei of ions joined by an ionic
bond. Because the ions are not identical in size, this distance must be properly
apportioned between the cation and anion. One way to apportion the electron
density between the ions is to define the radius of one ion and then infer the
radius of the other ion. The convention we have chosen to use is to assign 
an ionic radius of 140 pm. An alternative apportioning scheme is to use as
the reference ionic radius. When using ionic radii data, one should carefully
note which convention is used and not mix radii from the different conventions.
Starting with a radius of 140 pm for the radius of can be obtainedMg2+O2-,

F-

O2-

1

1

2

3

4

5

6

7

2 13 14 15 16 17

M09_PETR4521_10_SE_C09.QXD  1/16/10  3:05 AM  Page 367



368 Chapter 9 The Periodic Table and Some Atomic Properties

Despite the SI convention,
the angstrom unit, Å, is
still widely used by X-ray
crystallographers and others
who work with atomic and
molecular dimensions.

 FIGURE 9-3
Covalent, metallic, and
ionic radii compared
Atomic radii are represented
by the solid arrows. The
covalent radius is based on
the diatomic molecule

found only in gaseous
sodium. The metallic radius is
based on adjacent atoms in
solid sodium, Na(s). The value
of the ionic radius of is
obtained by the comparative
method described in the text.

Na+

Na21g2,

Covalent radius:

157 pm

Na Na

Metallic radius:

186 pm

Na Na

Ionic radius:

99 pm

Na* Cl+

from the internuclear distance in MgO, the radius of from the internuclear
distance in and the radius of from the internuclear distance in
NaCl. For metals, we define a metallic radius as one-half the distance between
the nuclei of two atoms in contact in the crystalline solid metal. Similarly in a
solid sample of a noble gas the distance between the centers of neighboring
atoms is called the van der Waals radius. There is much debate about the val-
ues of the atomic radii of noble gases because the experimental determination
of the van der Waals radii is difficult; consequently, the atomic radii of noble
gases are left out of the discussion of trends in atomic radii.

The angstrom unit, Å, has long been used for atomic dimensions
The angstrom, however, is not a recognized SI unit. The SI

units are the nanometer (nm) and picometer (pm).

(9.2)

Figure 9-3 illustrates the definitions of covalent, ionic, and metallic radii by
comparing these three radii for sodium. Figure 9-4 is a plot of atomic radius
against atomic number for a large number of elements. In this plot metallic
radii are used for metals and covalent radii for nonmetals. Figure 9-4 suggests
certain trends in atomic radii, for example, large radii for group 1, decreasing
across the periods to smaller radii for group 17. To interpret these trends, let us
first return to a topic introduced in Chapter 8.

Screening and Penetration

In Section 8-10, penetration was described as a gauge of how close an electron
gets to the nucleus. When interpreting the radial probability distributions, we
saw that s electrons, by virtue of their extra humps of probability close to 
the nucleus (Fig. 8-35), penetrate better than p electrons, which in turn penetrate
better than d electrons. Screening, or shielding, reflects how an outer electron is
blocked from the nuclear charge by inner electrons.

1 nm = 1 * 10-9 m; 1 pm = 1 * 10-12 m; 1 nm = 1000 pm

11 Å = 10-10 m2.

Na+MgCl2,
Cl-

 FIGURE 9-4
Atomic radii
The values plotted are metallic radii for metals and covalent radii for nonmetals. Data
for the noble gases are not included because of the difficulty of measuring covalent
radii for these elements (only Kr and Xe compounds are known). The explanations
usually given for the several small peaks in the middle of some periods are beyond
the scope of this discussion.
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 FIGURE 9-6
The shielding effect and
effective nuclear charge,

Two valence electrons (blue)
are attracted to the nucleus of
a Mg atom. The atom s 
nuclear charge is screened by
the 10 core electrons (gray),
but not perfectly. The valence
electrons also screen each
other somewhat. The result is
an effective nuclear charge,

closer to than to 2+ .3+Zeff,

12+

Zeff

Screen of electron charge 

from core electrons

Valence 

electron

Nucleus

(+)
(+)
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FIGURE 9-5
Radial probability distributions for magnesium
Graphs of as a function of r for the and orbitals of
magnesium. The graphs were obtained by using the radial functions from
Table 8.1 with (for ); (for ); (for );
and (for ). The inset plot has a smaller range of r values in
order to highlight the behavior of the probability functions closer to .r = 0
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Consider the hypothetical process of building up each atom in the third
period from the atom preceding it, beginning with sodium. In this process, the
number of inner-shell, or core, electrons is fixed at ten in the configuration

As a first approximation, let us assume that the core electrons com-
pletely cancel an equivalent charge on the nucleus. In this way, the core elec-
trons shield, or screen, the outer-shell electrons from the full attractive force of
the nucleus. Let us also assume that the outer-shell electrons do not screen one
another. Finally, let us redefine an effective nuclear charge, first intro-
duced in Section 8-10, as the true nuclear charge minus the charge that is
screened out by electrons.

(9.3)

Think of S as representing the number of inner electrons that appear to screen
or shield an outer electron. Based on the two assumptions just stated, in
sodium the ten core electrons would screen out 10 units of nuclear
charge (that is, ), leaving an effective nuclear charge of 
In magnesium would be In aluminum, would be 
and so on across the period.

Actually, neither assumption we made above full screening by inner-shell
electrons and no screening by outer-shell electrons is correct. These assump-
tions ignore the fact that the electrons, both inner and outer, occupy orbitals with
different radial probability distributions and, consequently, different degrees of
penetration (Fig. 9-5). Thus, an s electron, with its greater penetration, will be
screened by inner electrons less than will a p electron. Similarly a p electron is
shielded less than a d electron, which has a much lower penetration. In sodium,
the 10 core electrons cancel only about 8.5 units of charge; thus, is about 
not Also, outer-shell electrons do screen one another somewhat because of
penetration effects. Each outer-shell electron is about one-third effective in
screening the other outer-shell electrons. Thus, the experienced by each of
the two outer-shell electrons in magnesium is about not

(Fig. 9-6). As we will see, trends in properties of atoms and ions in the peri-
odic table are largely governed by the effective nuclear charge, 

The Effects of Penetration and Screening The wave function of a multielec-
tron atom provides a qualitative understanding of the effects of penetration
and screening. In this simplified picture, the nuclear charge is replaced by 
so that the orbital energy is approximated by

(9.4)

where is the effective nuclear charge in the shell corresponding to the
value of n. All other symbols have their usual meaning (see Chapter 8).
Equation (9.4) has the same form as the energy of the hydrogen atom obtained
as a solution to the Schrödinger equation. The multielectron atom has been

Zeff

En = -RH 

Zeff
2

n2

Zeff,

Zeff.
2+

12 - 8.5 -
1
3 = 3.2 + ,

Zeff

1+ .
2.5+ ,Zeff

+3,Zeff+2.1Z = 122, Zeff

11 - 10 = +1.S = 10
1Z = 112

Zeff = Z - S

Zeff,

1s22s22p6.
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370 Chapter 9 The Periodic Table and Some Atomic Properties

reduced to a one-electron approximation, a great oversimplification, but use-
ful nevertheless. The average size of an orbital is taken to be the average value
of the distance, of the electron in that orbital from the nucleus.

(9.5)rnl =
n2a0

Zeff
b 1 +

1

2
B1 -

/1/ + 12

n2
R r

rnl,

9-1 ARE YOU WONDERING...

Where estimates of the screening by electrons come from?

These estimates come from an analysis of the wave functions of multielectron atoms.
An exact solution of the Schrödinger equation can be obtained for the H atom, but
for multielectron atoms, only approximate solutions are possible. The principle of
the calculation is to assume each electron in the atom occupies an orbital much like
those of the hydrogen atom. However, the functional form of the orbital is based on
another assumption: that the electron moves in an effective or average field dictated
by all the other electrons. With this assumption, the complicated multielectron
Schrödinger equation is converted into a set of simultaneous equations one for
each electron. Each equation contains the unknown effective field and the unknown
functional form of the orbital for the electron. The approach to solving such a set of
equations is to guess at the functional forms of the orbitals, calculate an average
potential for each electron to move in, and then solve for a new set of orbitals one
for each electron. The expectation is that the new orbitals are better than the initial
guess. The new orbitals are then used to calculate a new effective field for the 
electrons, and the whole process is repeated until the calculated orbitals do not
change much.

This iterative procedure, called the self-consistent field (SCF) method, was
devised by Douglas Hartree in 1936, before the advent of computers. Currently,
the wave functions of atoms and molecules are obtained by implementing the
SCF procedures on computers. The use of computers to calculate molecular prop-
erties from a wave function by the SCF procedure has lead to the term molecular
modeling. Molecular modeling has become a tool in modern chemical research.

The atomic orbitals obtained from SCF calculations closely resemble the atomic
orbitals of the hydrogen atom in many ways. The angular dependence of the
orbitals is identical, so that we can identify orbitals by their characteristic
shapes. The radial functions of the orbitals are different because the effective field
is different from the one in the hydrogen atom, but the principal quantum number
can still be defined. Thus, each electron in a multielectron atom has associated with
it the four quantum numbers and Estimates of screening constants are
based on an analysis of the radial functions obtained from SCF calculations.

ms.n, /, m/,

s, p, d, f

In equation (9.5), all the symbols have their usual meaning. Again, equa-
tion (9.5) is the equation for the hydrogen atom or hydrogen-like ions with
the nuclear charge replaced by to approximate multielectron effects.
Equations (9.4) and (9.5) are approximate but provide for a very useful
semiquantitative interpretation of atomic properties. We consider next the
three most important trends among atomic radii in relation to the periodic
table.

1. Variation of Atomic Radii Within a Group of the Periodic Table. Radial
probability densities extend farther out from the nucleus as n increases, a
fact seen both in Figure 8-35 and in equation (9.5). Thus, we should expect
that the more electron shells occupied by electrons, the larger the atom.
This idea works for the group members of lower atomic numbers, where
the increase in radius from one period to the next is large (as from Li to
Na to K in group 1). At higher atomic numbers, the increase in radius is
smaller (as from K to Rb to Cs in group 1). In these elements of higher
atomic number, outer-shell electrons are held somewhat more tightly than

Zeff

KEEP IN MIND

that s- and p-valence electrons
have some probability of being
near the nucleus (Fig. 8-35).
These electrons penetrate the
inner core of electrons and
experience a greater attraction
to the nucleus than otherwise
expected.

The leading term of equa-
tion (9.5) is the Bohr radius of
the nth Bohr orbit. The corre-
sponding formula for the
orbitals of the H atom can be
obtained by setting Zeff = 1.

*
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9-3 Sizes of Atoms and Ions 371

expected because inner-shell electrons in d and subshells are less effec-
tive than s and p electrons in screening outer-shell electrons from the
nucleus; that is, is larger than expected. Nevertheless, in general, the
following is true.

Zeff

f

Values of can be
estimated using the rules set
out in Feature Problem 73.

Zeff*

The more electronic shells in an atom, the larger is the atom. Atomic
radius increases from top to bottom through a group of elements.

The atomic radius decreases from left to right through a period of elements.

9-2 CONCEPT ASSESSMENT

The graph in the margin represents the variation of and atomic radius with
atomic number. Which axis and correspondingly colored line corresponds to 
and which to atomic radius?

Zeff

Zeff

11 12 13 14 15 16 17 18

? ?

Atomic number

2. Variation of Atomic Radii Within a Period of the Periodic Table. From
Figure 9-4, we see that, in general, atomic radius decreases from left to
right across a period. A careful look at the figure suggests that this trend
does not apply to the transition elements. Let us look first at the general
trend of decreasing radii and then at what is special about the transition
elements.

Across a period, the atomic number increases by one for each succeed-
ing element. For the main-group elements, each increase in atomic num-
ber is accompanied by the addition of one electron to the valence shell.
The valence-shell electrons, being in the same shell, shield each other
poorly from the increasing nuclear charge. The for the 2s electron of Li
is 1.3, and that for Be is 1.9; thus, increases as Z increases across the
main-group portions of a period. Across a period, the principal quantum
number stays constant, so that whether we use or just the nuclear
charge Z in equation (9.5), the result is as follows.

Zeff

Zeff

Zeff

3. Variation in Atomic Radius Within a Transition Series. With the transi-
tion elements, the situation is a little different from that described above.
In Figure 9-4, it is apparent that the atomic radii of transition elements
tend to be about the same across a period but with a few unusual peaks. It
is beyond the scope of this text to explain the exceptions; however, the
general trend is not difficult to understand. In a series of transition ele-
ments, additional electrons go into an inner electron shell, where they par-
ticipate in shielding outer-shell electrons from the nucleus. At the same
time, the number of electrons in the outer shell tends to remain constant.
Thus, the outer-shell electrons experience a roughly comparable force of
attraction to the nucleus throughout a transition series. Consider Fe, Co,
and Ni. Fe has 26 protons in the nucleus and 24 inner-shell electrons. In Co

there are 25 inner-shell electrons, and in Ni there are
26. In each case, the two outer-shell electrons are under the influence of
about the same net charge (about ). That is, for the electrons of
the first transition series is approximately constant. Thus, atomic radii do
not change very much for this series of three elements, namely, 124 pm for
Fe and 125 pm for Co and Ni.

4sZeff+2

1Z = 282,1Z = 272,
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372 Chapter 9 The Periodic Table and Some Atomic Properties

EXAMPLE 9-1 Relating Atomic Size to Position in the Periodic Table

Refer only to the periodic table on the inside front cover, and determine which is the largest atom: Sc, Ba, or Se.

Analyze
We first place the element in the periodic table and decide whether or not the elements are in the same period
and whether they are on the right or left of the periodic table. We can then use the rules noted above to decide
on the relative sizes of atoms (or ions).

Solve
Sc and Se are both in the fourth period, and we would expect Sc to be larger than Se because atomic sizes
decrease from left to right in a period. Ba is in the sixth period and so has more electronic shells than either
Sc or Se. Furthermore, it lies even closer to the left side of the table (group 2) than does Sc (group 3). We can
say with confidence that the Ba atom should be the largest of the three.

Assess
By using the procedure outlined above, we have been able to show that The actual atomic radii
are Se, 117 pm; Sc, 161 pm; and Ba, 217 pm.

PRACTICE EXAMPLE A: Use the periodic table on the inside front cover to predict which is the smallest atom:
As, I, or S.

PRACTICE EXAMPLE B: Which of the following atoms do you think is closest in size to the Na atom: Br, Ca, K, or
Al? Explain your reasoning, and do not use any tabulated data from the chapter in reaching your conclusion.

rBa 7 rSc 7 rSe.

Ionic Radius
When a metal atom loses one or more electrons to form a positive ion, the
positive nuclear charge exceeds the negative charge of the electrons in the
resulting cation. The nucleus draws the electrons in closer, and, as a conse-
quence, the following holds true.

Cations are smaller than the atoms from which they are formed.

Figure 9-7 compares four species: the atoms Na and Mg and the ions 
and As expected, the Mg atom is smaller than the Na atom, and the
cations are smaller than the corresponding atoms. and are
isoelectronic they have equal numbers of electrons (10) in identical configu-
rations, is smaller than because its nuclear charge is
larger ( compared with for Na).+11+12,

Na+1s22s22p6. Mg2+

Mg2+Na+
Mg2+.

Na+

 FIGURE 9-7
A comparison of atomic
and ionic sizes
Metallic radii are shown for Na
and Mg and ionic radii for 
and Mg2+.

Na+

Na* Mg2*

99 pm
72 pm

186 pm

Na Mg

160 pm

For isoelectronic cations, the more positive the ionic charge, the smaller
the ionic radius.

When a nonmetal atom gains one or more electrons to form a negative ion
(anion), the nuclear charge remains constant, but is reduced because of the
additional electron(s). The electrons are not held as tightly. Repulsions among
the electrons increase. The electrons spread out more, and the size of the atom
increases, as suggested in Figure 9-8.

Zeff

Anions are larger than the atoms from which they are formed. For isoelec-
tronic anions, the more negative the charge, the larger the ionic radius.
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9-3 Sizes of Atoms and Ions 373

EXAMPLE 9-2 Comparing the Sizes of Cations and Anions

Refer only to the periodic table on the inside front cover, and arrange the following species in order of increas-
ing size: and 

Analyze
The key lies in recognizing that the four species are isoelectronic, having the electron configuration of argon:

When considering isoelectronic cations, the higher the charge on the ion, the smaller the ion.

Solve
The larger charge on the calcium ion means that is smaller than Because has a higher nuclear
charge than ( compared with ), it is smaller than For isoelectronic anions, the higher the
charge, the larger the ion. is larger than The order of increasing size is

Assess
We can summarize the generalizations about isoelectronic atoms and ions into a single statement: Among iso-
electronic species, the greater the atomic number, the smaller the size.

PRACTICE EXAMPLE A: Refer only to the periodic table on the inside front cover, and arrange the following
species in order of increasing size: and 

PRACTICE EXAMPLE B: Refer only to the periodic table on the inside front cover, and determine which species
is in the middle position when the following five are ranked according to size: the atoms N, Cs, and As and the
ions and Br-.Mg2+

Sr2+.Ti2+, V3+, Ca2+, Br-,

Ca2+
6 K+

6 Cl- 6 S2-

Cl-.S2-
Cl-.Z = 17Z = 19,Cl-

K+K+.Ca2+

1s22s22p63s23p6.

Ca2+.K+, Cl-, S2-,

 FIGURE 9-8
Covalent and anionic radii
compared
The two Cl atoms in a 
molecule gain one electron
each to form two ions.Cl-

Cl2

* 2 e+

Covalent

radius

Ionic

radius

99 pm 181 pm

Cl+

Cl+

Cl

Cl

Knowledge of atomic and ionic radii can be used to vary certain physical
properties. One example concerns strengthening glass. Normal window glass
contains and ions. The glass is brittle and shatters easily when struck
a hard blow. One way to strengthen the glass is to replace the ions at the
surface with ions. The ions are larger and fill up the surface sites, leaving
less opportunity for cracking than with the smaller ions. The result is a
shatter-resistant glass.

Another example is the striking result when ions replace about 1% of
the ions in aluminum oxide, This substitution is possible
because ions are only slightly larger (by 9 pm) than ions. Pure alu-
minum oxide is colorless, but with this small amount of chromium(III) ion, it
is a beautiful red color. This impure is the gem known as a ruby.
Rubies and other gemstones can be made artificially and are used as jewelry
and in devices such as lasers. The color of the ruby is further discussed in
Chapter 24.

Figure 9-9, arranged in the format of the periodic table, shows relative sizes
of typical atoms and ions, and summarizes the generalizations described in
this section.

Al2O3

Al3+Cr3+
Al2O3.Al3+

Cr3+

Na+
K+K+

Na+
Ca2+Na+

9-3 CONCEPT ASSESSMENT

On the blank periodic table in the margin, locate the following:

(a) The smallest group 13 atom

(b) The smallest period 3 atom

(c) The largest anion of a nonmetal in period 3

(d) The largest group 13 cation

1

1

2

3

4

5

6

7

2 13 14 15 16 17

M09_PETR4521_10_SE_C09.QXD  1/16/10  3:05 AM  Page 373



374 Chapter 9 The Periodic Table and Some Atomic Properties

B C N FO
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+
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 FIGURE 9-9
A comparison of some atomic and ionic radii
The values given, in picometers (pm), are metallic radii for metals, single covalent
radii for nonmetals, and ionic radii for the ions indicated.

9-4 Ionization Energy
In discussing metals, we talked about metal atoms losing electrons and
thereby altering their electron configurations. But atoms do not eject electrons
spontaneously. Electrons are attracted to the positive charge on the nucleus of
an atom, and energy is needed to overcome that attraction. The more easily its
electrons are lost, the more metallic an atom is considered to be. The
ionization energy, I, is the quantity of energy a gaseous atom must absorb to
be able to expel an electron. The electron that is lost is the one that is most
loosely held.

Ionization energies are usually measured through experiments based on
the photoelectric effect in which gaseous atoms at low pressures are bom-
barded with photons of sufficient energy to eject an electron from the atom.
Here are two typical values.

 Mg+1g2 ¡ Mg2+
1g2 + e-  I2 = 1451 kJ>mol

 Mg1g2 ¡ Mg+1g2 + e-  I1 = 738 kJ>mol
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9-4 Ionization Energy 375

The symbol stands for the first ionization energy the energy required to
strip one electron from a neutral gaseous atom.* is the second ionization
energy the energy to strip an electron from a gaseous ion with a charge of

Further ionization energies are and so on. Each succeeding ioniza-
tion energy is invariably larger than the preceding one. In the case of magne-
sium, for example, in the second ionization, the electron, once freed, has to
move away from an ion with a charge of More energy must be
invested than for a freed electron to move away from an ion with a charge of

This is a direct consequence of Coulomb s law, which states, in
part, that the force of attraction between oppositely charged particles is
directly proportional to the magnitudes of the charges.

First ionization energies for many of the elements are plotted in
Figure 9-10. In general, the farther an electron is from the nucleus, the more
easily it can be extracted.

1I12

1+  1Mg+2.

2+  1Mg2+
2.

I4,I3,1+ .

I2

I1 A distinction between
valence electrons and core
electrons can be made based
on the ionization energies for
removing electrons one by
one. The ionization energies
of valence electrons are much
smaller and show a big jump
when the first core electron is
removed.
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 FIGURE 9-10
First ionization energies as a function of atomic number
Because their electron configurations are so stable, more energy is required to ionize
noble gas atoms than to ionize atoms of the elements immediately preceding or
following them. The maxima on the graph come at the atomic numbers of the noble
gases. The alkali metals are the most easily ionized of all groups. The minima in the
graph come at their atomic numbers.

*Ionization energies are sometimes expressed in the unit electron-volt (eV). One electron-volt is
the energy acquired by an electron as it falls through an electric potential difference of 1 volt. It is a
very small energy unit, especially suited to describing processes involving individual atoms. When
ionization is based on a mole of atoms, is the preferred unit 
Sometimes the term ionization potential is used instead of ionization energy. Further, the quantities

may be replaced by enthalpy changes, and so on.¢H1, ¢H2,I1, I2, Á ,

11 eV>atom = 96.49 kJ>mol2.kJ>mol

Ionization energies decrease as atomic radii increase.
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376 Chapter 9 The Periodic Table and Some Atomic Properties

This generalization works
well for main-group elements
but less so for transition
elements, where there are
several exceptions.

*

This observation that ionization energies decrease as atomic radii increase
reflects the effect of n and on the ionization energy Equation (9.4) sug-
gests that the ionization energy is given by

(9.6)

so that across a period, as increases and the valence-shell principal quan-
tum number n remains constant, the ionization energy should increase. And
down a group, as n increases and increases only slightly, the ionization
energy should decrease. Thus, atoms lose electrons more easily (become
more metallic) as we move from top to bottom in a group of the periodic
table. The decreases in ionization energy and the parallel increases in atomic
radii are outlined in Table 9.3 for group 1.

Table 9.4 lists ionization energies for the third-period elements. With minor
exceptions, the trend in moving across a period (follow the colored stripe) is
that atomic radii decrease, ionization energies increase, and the elements
become less metallic, or more nonmetallic, in character. Table 9.4 lists stepwise
ionization energies ( and so forth.). Note particularly the large breaks that
occur along the zigzag diagonal line. Consider magnesium as an example. To
remove a third electron, as measured by requires breaking into the espe-
cially stable noble-gas inner-shell electron configuration is much
larger than so much larger that cannot be produced in ordinary
chemical processes. Similarly, we do not encounter the ions or in
chemical processes.

Now let us turn to the obvious exceptions to the regular trend in values
for the third-period elements and ask, Why is of Al smaller than that of Mg
and of S smaller than that of P?I1

I1

I1

Al4+Na2+
Mg3+I2

2s22p6. I3

I3,

I1, I2,

Zeff

Zeff

I = RH *
Zeff

2

n2

1I2.Zeff

TABLE 9.3 Atomic
Radii and First
Ionization Energies 
of the Alkali Metal
(Group 1) Elements

Atomic 
Radius, 
pm

Ionization 
Energy 
kJ/mol

(I1),

Li 152 520.2
Na 186 495.8
K 227 418.8
Rb 248 403.0
Cs 265 375.7

TABLE 9.4 Ionization Energies of the Third-Period Elements (in kJ/mol)

Na Mg Al Si P S Cl Ar

I1 495.8 737.7 577.6 786.5 1,012 999.6 1,251.1 1,520.5
I2 4,562 1,451 1,817 1,577 1,903 2,251 2,297 2,666
I3 7,733 2,745 3,232 2,912 3,361 3,822 3,931
I4 11,580 4,356 4,957 4,564 5,158 5,771
I5 16,090 6,274 7,013 6,542 7,238
I6 21,270 8,496 9,362 8,781
I7 27,110 11,020 12,000

9-2 ARE YOU WONDERING...

If ionization energies can be used to estimate the effective
nuclear charge?

One of the earliest estimates of effective nuclear charge was obtained by analyzing
ionization energies in terms of equation (9.6). Thus, for example, the ionization
energy of Li in its ground state is and from equation (9.6), we have

I1 = 1312.1
Zeff

2

n2
 kJ mol-1

519 kJ mol-1
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Mg

Al

P

S

3s 3p

so that

and we get

The obtained from the ionization energy of the first excited state of
is 1.02. The value of is very close to one because

the inner core almost perfectly screens the electron. By contrast, the pen-
etration of the electron leads to the somewhat larger for the
ground state.

Zeff = 1.262s
2p1s2
Zeff339 kJ mol-1,Li 11s22p2,

Zeff

Zeff = 1.26

519 kJ mol-1
= 1312.1

Zeff
2

22
 kJ mol-1

Consider the orbital diagrams for Mg, Al, P, and S shown in the margin. We
expect of Al to be larger than for Mg. The reversal occurs because of the
particular electrons lost. Mg loses a electron, while Al loses a electron.
We expect that more energy is required to strip an electron from the lower
energy orbital in than from a half-filled orbital in

for S is slightly lower than for P for a different reason.
Although the orbitals in the subshell are degenerate, we can think of repul-

sion between electrons in the filled orbital of a S atom as
making it easier to remove one of those electrons than an electron from the
half-filled subshell of a P atom 13Ne43s23p3

2.3p

13Ne43s23p4
23p

3p
I1Al 13Ne43s23p1

2.
3pMg 13Ne43s2

23s

3p3s
I1

EXAMPLE 9-3 Relating Ionization Energies

Refer to the periodic table on the inside front cover, and arrange the following in the expected order of increas-
ing first ionization energy, 

Analyze
Ionization energies decrease as atomic radii increase. Thus, if we arrange these four atoms according to
decreasing radius, we will likely have arranged them according to increasing ionization energy. The largest
atoms are to the left and the bottom of the periodic table. The smallest atoms are to the right and toward the
top of the periodic table.

Solve
Of the four atoms, the one that best fits the large-atom category is Although none of the four atoms is par-
ticularly close to the top of the table, is the farthest to the right. This fixes the two extremes: Sr with the low-
est ionization energy and Br with the highest. A tin atom should be larger than an arsenic atom, and thus Sn
should have a lower ionization energy than As. The expected order of increasing ionization energies is

Assess
The generalization that ionization energies decrease as atomic radii increase ignores the exceptions that occur
when making comparisons between atoms of groups 2 and 13, as well as atoms of groups 15 and 16.

PRACTICE EXAMPLE A: Refer to the periodic table on the inside front cover, and arrange the following in the
expected order of increasing first ionization energy, 

PRACTICE EXAMPLE B: Refer to the periodic table on the inside front cover, and determine which element is
most likely in the middle position when the following five elements are arranged according to first ionization
energy, I1. Rb, As, Sb, Br, Sr.

I1: Cl, K, Mg, S.

Sr 6 Sn 6 As 6 Br.

Br
Sr.

I1: As, Sn, Br, Sr.

 Orbital diagram showing the
valence electron configuration
of magnesium, aluminum,
phosphorus, and sulfur.
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378 Chapter 9 The Periodic Table and Some Atomic Properties

9-4 CONCEPT ASSESSMENT

On the blank periodic table in the margin, locate the following:

(a) The group 14 element with the highest first ionization energy

(b) The element with the greatest first ionization energy in period 4

(c) A p-block element in period 4 that has a lower first ionization energy than
the element immediately preceding it and the element directly following it

9-5 Electron Affinity
Ionization energy is the energy change for the removal of an electron. Let s
consider the energy change associated with the addition of an electron. The
thermochemical equation for the addition of an electron to a fluorine atom is

Notice that the process above is exothermic, meaning that energy is given off
when an F atom gains an electron. Electron affinity, EA, can be defined as the
enthalpy change, that occurs when an atom in the gas phase gains an
electron. According to this definition, the electron affinity of fluorine is a neg-
ative quantity.

We have defined electron affinity to reflect the tendency for a neutral atom
to gain an electron. An alternative definition refers to the energy change in the
process: that is, reflecting the tendency of an anion to
lose an electron. This alternative definition leads to the opposite signs for EA
values from those written in this text. You should be prepared to see electron
affinities expressed in both ways in the chemical literature.

Some representative electron affinities are listed in Figure 9-11. It is more
difficult to make generalizations about electron affinities than about ioniza-
tion energies. The smaller atoms to the right of the periodic table (for example,
group 17) tend to have large, negative electron affinities.* Electron affinities

X-1g2 ¡ X1g2 + e-;

¢Hea,

F1g2 + e-: F-1g2   ¢Hea = -328 kJ mol-1

*It is somewhat awkward to speak of larger and smaller with the term electron affinity. A strong
tendency to gain an electron, which implies a high affinity  for an electron, as with F and Cl, is
reflected through a low value of EA a large negative value.

FIGURE 9-11
Electron affinities of 
main-group elements
Values are in kilojoules 
per mole for the process
X(g) + e- ¡ X-(g).

*
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+5.03

+13.95

,0

,0

,0

,0

,0

,0

,0 +328.0

+349.0

+324.6

+295.2

1

1

2

3

4

5

6

7

2 13 14 15 16 17
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tend to become less negative in progressing toward the bottom of a group,
with the notable exception of the second-period members of groups 15, 16,
and 17 (namely, N, O, and F). It is likely that for these small atoms, an incom-
ing electron encounters strong repulsive forces from other electrons in the
atom and is thereby not as tightly bound as we might otherwise expect.

Some atoms have no tendency to gain an electron. This is the case with the
noble gases, where an added electron would have to enter the empty s orbital
of the next electronic shell. Other cases include the groups 2 and 12 elements,
where the electron would have to enter the p subshell of the valence shell and
a few other elements, such as Mn, where the electron would have to enter
either the p subshell of the valence shell or a half-filled subshell.

In considering the gain of a second electron by a nonmetal atom, we
encounter positive electron affinities. Here the electron to be added is
approaching not a neutral atom, but a negative ion. There is a strong repulsive
force between the electron and the ion, and the energy of the system increases.
Thus, for an element like oxygen, the first electron affinity is negative and the
second is positive.

The high positive value of makes the formation of gaseous seem 
very unlikely. The ion can exist, however, in ionic compounds, such as
MgO(s), where formation of the ion is accompanied by other energetically
favorable processes.

O2-
O2-

EA2

 O-
1g2 + e- ¡ O2-

1g2  EA2 = +744 kJ>mol

 O1g2 + e- ¡ O-
1g2  EA1 = -141.0 kJ>mol

3d

9-5 CONCEPT ASSESSMENT

On the blank periodic table in the margin locate the group expected to have:

(a) the most negative electron affinities in each period

(b) the least negative electron affinities in each period

(c) all positive electron affinities in each period

9-6 Magnetic Properties

An important property related to the electron configurations of atoms and
ions is their behavior in a magnetic field. A spinning electron is an electric
charge in motion. It induces a magnetic field (recall the discussion on page
334). In a diamagnetic atom or ion, all electrons are paired and the individual
magnetic effects cancel out. A diamagnetic species is weakly repelled by a
magnetic field. A paramagnetic atom or ion has unpaired electrons, and the
individual magnetic effects do not cancel out. The unpaired electrons possess
a magnetic moment that causes the atom or ion to be attracted to an external
magnetic field. The more unpaired electrons present, the stronger is this
attraction.

Manganese has a paramagnetism corresponding to five unpaired electrons,
which is consistent with the electron configuration

1

1

2

3

4

5

6

7

2 13 14 15 16 17

KEEP IN MIND

that it was the effect of the
magnetic moments associated
with the two different possi-
bilities for an electron spin
quantum number (equal in
magnitude and opposite in
sign) that allowed Stern and
Gerlach to detect the presence
of electron spin by using a
magnetic field.

Mn:    [Ar]

3d 4s
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380 Chapter 9 The Periodic Table and Some Atomic Properties

When a manganese atom loses two electrons, it becomes the ion which
is paramagnetic, and the strength of its paramagnetism corresponds to five
unpaired electrons.

Mn2+,

Mn2*:    [Ar]

3d 4s

When a third electron is lost to produce the ion has a paramagnetism
corresponding to four unpaired electrons. The third electron lost is one of the
unpaired electrons.3d

Mn3+,

Mn3*:    [Ar]

3d 4s

EXAMPLE 9-4 Determining the Magnetic Properties of an Atom or Ion

Which of the following would you expect to be diamagnetic and which paramagnetic?

(a) Na atom (b) Mg atom (c) ion (d) Ag atom

Analyze
To determine whether or not an atom or ion is paramagnetic, we need to determine the electronic configura-
tion of the species.

Solve
(a) Paramagnetic. The Na atom has a single electron outside the Ne core. This electron is unpaired.

(b) Diamagnetic. The Mg atom has two electrons outside the Ne core. They must be paired, as are all the
other electrons in the Ne core.

(c) Diamagnetic. is isoelectronic with Ar, and Ar has all electrons paired 

(d) Paramagnetic. We do not need to work out the exact electron configuration of Ag. Because the atom has
47 electrons an odd number at least one of the electrons must be unpaired (recall the Stern Gerlach
experiment, page 334).

Assess
We see that a quick method of determining the magnetic properties of an atom or an ion is to use that atomic
number and add or subtract for anions and cations. If the resultant number is odd, then the species is paramag-
netic. However, if the number is even, the species may or may not be diamagnetic, depending on the electronic
configuration for example, consider Ti.

PRACTICE EXAMPLE A: Which of the following are paramagnetic and which are diamagnetic: 
and Al?

PRACTICE EXAMPLE B: Which has the greater number of unpaired electrons, or Explain.Cr3+?Cr2+

Zn, Cl, K+, O2-,

11s22s22p63s23p6
2.Cl-

3s

3s

Cl-

9-6 CONCEPT ASSESSMENT

On the blank periodic table in the margin locate the following:

(a) The period 4 transition element having a cation in the oxidation state
that is diamagnetic

(b) The period 5 element existing in the oxidation state as an anion that is
diamagnetic

(c) The period 4 transition element having a cation that is paramagnetic
and has a half-filled d subshell

2+

-2

+31

1

2

3

4

5

6

7

2 13 14 15 16 17
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9-7 Periodic Properties of the Elements 381

9-7 Periodic Properties of the Elements
As we noted at the beginning of the chapter, we can use the periodic law and
the periodic table to predict some of the atomic, physical, and chemical prop-
erties of elements and compounds.

Atomic Properties
In this chapter we have learned how some atomic properties atomic radius
and ionization energy vary within groups and periods of elements. We sum-
marize these trends in relation to the periodic table in Figure 9-12. Trends are
generally easy to apply within a group: The atomic radius of Sr is greater than
that of Mg; both elements are in group 2. Usually, there is no difficulty in
applying trends within a period either: The first ionization energy of P is
greater than that of Mg; both elements are in the third period. However, com-
paring elements that are not within the same group or period can be difficult.
The atomic radius of Sr is greater than that of P. Sr is farther down in its group
of the periodic table and much farther to the left in its period than is P. Each of
these directions is that of increasing atomic radius. We cannot, however, easily
predict whether Mg or I has the larger atomic radius. The position of Mg to the
left in its period suggests that Mg should have the larger radius, but the posi-
tion of I toward the bottom of its group argues for I. Despite this limitation,
you should find Figure 9-12 helpful in most cases.

Variation of Physical Properties Within a Group Table 9.5 lists some proper-
ties of three of the halogens (group 17). The table has two blank spaces for
bromine. We fill in these blanks in Example 9-5 by making an assumption that
works often enough to make it useful:

Ionization energy

A
to

m
ic

 r
ad

iu
s

Atomic radius

Nonmetallic character

Metallic character

Io
n
iz

at
io

n
 e

n
er

g
y

FIGURE 9-12
Atomic properties and the periodic 
table a summary
Atomic radius refers to metallic radius for metals and
covalent radius for nonmetals. Ionization energies refer
to first ionization energy. Metallic character relates
generally to the ability to lose electrons, and nonmetallic
character to the ability to gain electrons.

*

The value of a property often changes uniformly from the top to the
bottom of a group of elements in the periodic table.

TABLE 9.5 Some Properties of Three Halogen (Group 17) Elements

Atomic 
Number

Atomic 
Mass, u

Molecular 
Form

Melting 
Point, K

Boiling 
Point, K

Cl 17 35.45 Cl2 172 239
Br 35 79.90 Br2 ? ?
I 53 126.90 I2 387 458

M09_PETR4521_10_SE_C09.QXD  1/16/10  3:06 AM  Page 381



382 Chapter 9 The Periodic Table and Some Atomic Properties

EXAMPLE 9-5 Using the Periodic Table to Estimate Physical Properties

Use data from Table 9.5 to estimate the boiling point of bromine.

Analyze
Remember that boiling points increase going down a group. As an initial guess we can consider the average
between two elements.

Solve
The atomic number of bromine (35) is between the atomic numbers of chlorine (17) and iodine (53). Its atomic
mass (79.90 u) is also intermediate to those of chlorine and iodine. (The average of the atomic masses of Cl and
I is 81.18 u.) It is reasonable to expect that the boiling point of liquid bromine might also be intermediate to the
boiling points of chlorine and iodine.

Assess
The observed boiling point is 332 K, which is close to the calculated result. A better estimate of the boiling
point could possibly be made by plotting the known boiling points as a function of atomic mass, and then fit-
ting the data.

PRACTICE EXAMPLE A: Estimate the melting point of bromine.

PRACTICE EXAMPLE B: Estimate the boiling point of astatine, At.

bp Br2 L
239 K + 458 K

2
= 349 K

First, let us make some predictions about fluorine, the halogen not listed in
Table 9.5. Its closest neighbor in group 17 is chlorine, which has a boiling point
of chlorine is a gas at room temperature (about 298 K). The
other halogens are liquid bromine and solid iodine (Fig. 9-13). We would expect
fluorine to have a lower melting point (mp) and lower boiling point (bp) than
chlorine and also to be a gas at room temperature. (Observed values for

)F2: mp = 53 K; bp = 85 K.

239 K 1-34 °C2;

The generalization that a property varies uniformly within a group of the
periodic table can work for compounds as well as for elements. Table 9.6 lists
the melting points of two sets of compounds, binary carbon halogen com-
pounds and the hydrogen halides, HX (where ). We see that
the melting points increase fairly uniformly with increasing molecular mass
for the carbon halogen compounds. This trend between melting point (and
boiling point) and molecular mass can be explained in terms of intermolecu-
lar forces, as we will see in Chapter 12. Based on the melting points of HCl,
HBr, and HI, the melting point of HF should be about but the
observed value is Some factor other than molecular mass must be
involved here. In Chapter 12, we will find that in HF there is a special inter-
molecular force of attraction that is missing or unimportant in the other
compounds in Table 9.6.

Variation of Physical Properties Across a Period A few properties vary reg-
ularly across a period. The ability to conduct heat and electricity are two that
do. Thus, among the third-period elements, the metals Na, Mg, and Al have
good thermal and electrical conductivities. The metalloid Si is only a fair con-
ductor of heat and electricity, while the nonmetals P, S, Cl, and Ar are poor
conductors.

In some cases, the trend in a property reverses direction in the period (sim-
ilar to the trend in melting points of the hydrogen halides reversing direction

-83.6 °C.
-145 °C,

X = F, Cl, Br, or I

 FIGURE 9-13
Three halogen elements
Chlorine is a yellow-green gas.
Bromine is a dark red liquid.
Iodine is a grayish black solid.

TABLE 9.6 Melting
Points of Two Series
of Compounds

Molecular 
Mass, u

Melting 
Point, °C

CF4 88.0 -183.7
CCl4 153.8 -22.9
CBr4 331.6 90.1
CI4 519.6 171
HF 20.0 -83.6
HCl 36.5 -114.2
HBr 80.9 -86.8
HI 127.9 -50.8
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9-7 Periodic Properties of the Elements 383

within a group). Consider, for example, the melting points of the third-period
elements shown in a bar graph in Figure 9-14. Melting involves destruction of
the orderly arrangement of the atoms or molecules in a crystalline solid. The
amount of thermal energy needed for melting to occur, and hence the melt-
ing-point temperature, depends on the strength of the attractive forces
between the atoms or molecules in the solid. For the metals Na, Mg, and Al,
these forces are metallic bonds, which, roughly speaking, become stronger as
the number of electrons available to participate in the bonding increases.
Sodium, therefore, has the lowest melting point (371 K) of the third-period
metals. With silicon, the forces between atoms are strong covalent bonds
extending throughout the crystalline solid. Silicon has the highest melting
point (1683 K) of the third-period elements. Phosphorus, sulfur, and chlorine
exist as discrete molecules ( and ). The bonds between atoms within
molecules are strong, but intermolecular forces, the attractive forces between
molecules, become progressively weaker across the period, and the melting
points decrease. Argon atoms do not form molecules, and the forces between
Ar atoms in solid argon are especially weak. Argon s melting point is the low-
est for the entire period (84 K). The property of hardness also depends on
forces between atoms and molecules in a solid. So the hardness of the solid
third-period elements varies in much the same way as their melting points.
Thus, on a 10-point scale in which solids are rated according to their abilities
to scratch or abrade one another, sodium has a hardness of about 0.5; magne-
sium, 2; aluminum, 3; silicon, 7; and phosphorus and sulfur 1 to 2. Silicon has
the greatest hardness.

Reducing Abilities of Group 1 and 2 Metals We learned in Chapter 5 that a
reducing agent makes possible a reduction half-reaction. The reducing agent
itself, by losing electrons, is oxidized. In the following reactions, M, a group
1 or 2 metal, is the reducing agent and is the substance that is reduced.

At first guess, we might think that the lower the energy requirement for
extracting electrons the lower the ionization energy the better the metal is
as a reducing agent and the more vigorous its reaction with water. Potassium,
for instance, has a lower ionization energy than does the
next member of the fourth period, calcium Our
expectation is that potassium should react more vigorously with water than

1I1 = 590; I2 = 1145 kJ>mol2.
1I1 = 419 kJ>mol2

M1s2 + 2 H2O1l2 ¡ M2+
1aq2 + 2 OH-

1aq2 + H21g2   1M = Ca, Sr, Ba, or Ra2

 2 M1s2 + 2 H2O1l2 ¡ 2 M+
1aq2 + 2 OH-

1aq2 + H21g2   1M = group 1 metal2

H2O

Cl2P4, S8,

FIGURE 9-14
Melting points of the third-period
elements
Sometimes the trend in a property
reverses direction within a period, 
as illustrated by this bar graph.

*

371 K

922 K

1683 K

863 K

393 K

172 K
84 K

933 K

Na

11

Mg

12

Al

13

Si

14

P

15

S

16

Cl

17

Ar

18Z *

When evaluating trends, 
it is often useful to sketch a
graph showing the variation
of the property.

*

Metallic bonds are
described in Section 11-7,
covalent bonding in 
substances like silicon is 
discussed in Section 12-7, 
and the topic of intermolecular
forces is examined throughout
Chapter 12.

*
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384 Chapter 9 The Periodic Table and Some Atomic Properties

calcium does. This, indeed, is the case (Fig. 9-15). Mg and Be do not react with
cold water as do the other alkaline earth metals. This might be explained in
terms of the higher ionization energies for those two metals 

Attributing the reactivity of these group 1 and 2 metals just to their ioniza-
tion energies is an oversimplification, however. As long as the differences in
ionization energies are very large, it is possible to make comparisons by con-
sidering only this factor. Where differences in ionization energies are
smaller, though, other factors must also be considered, as we will see else-
where in the text.

Oxidizing Abilities of the Halogen Elements (Group 17) An oxidizing agent
gains the electrons that are lost in an oxidation half-reaction. The oxidizing agent,
by gaining electrons, is itself reduced. Electron affinity is the atomic property
introduced in this chapter that is related to the gain of electrons. We might expect
an atom with a strong tendency to gain electrons (a large negative electron affin-
ity) to take electrons away from atoms with low ionization energies metals. In
these terms, it is understandable that active metals form ionic compounds with
active nonmetals. If M is a group 1 metal and X a group 17 nonmetal (halogen),
this exchange of an electron leads to the formation of and ions. In some
cases, the reaction is especially vigorous (Fig. 9-16).

Another interesting oxidation reduction reaction involving the halogens is
a displacement reaction. Two halogens, one in molecular form and the other in
ionic form, exchange places, as in this reaction (Fig. 9-17).

We might think of this reaction as involving a competition between Cl and I
atoms for an extra electron that only the I atoms (as ) have initially. The Cl
atoms win out because they have a more negative electron affinity. (This is an
oversimplified explanation, however, because strictly speaking electron affini-
ties apply only to the behavior of isolated gaseous atoms and not to atoms in
molecules or ions in solution.) By similar reasoning, can you see why no reac-
tion occurs for this combination?

Br21l2 + Cl-1aq2 ¡ no reaction

I-

Cl21g2 + 2 I-1aq2 ¡ I21aq2 + 2 Cl-1aq2

2 M + X2 ¡ 2 MX 3e.g., 2 Na1s2 + Cl2 1g2 ¡ 2 NaCl1s24

X-M+

I2 = 1451 kJ>mol; Be: I1 = 900, I2 = 1757 kJ>mol2.
1Mg: I1 = 738,

(b)(a)

FIGURE 9-15
A comparison of the reactions of potassium
and calcium with water
(a) Potassium, a group 1 metal, reacts so rapidly
that the hydrogen evolved bursts into flame.
Notice that the metal is less dense than water. 
(b) Calcium, a group 2 metal, reacts more slowly
than does potassium. Also, calcium is denser than
water. The pink color of the acid base indicator
phenolphthalein signals the buildup of ions.OH-

 FIGURE 9-16
Reaction of sodium metal
and chlorine gas
The contents of the flask glow
in this exothermic reaction
between Na(s) and 
The product is the ionic solid
NaCl(s).

Cl21g2.
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9-7 Periodic Properties of the Elements 385

Such predictions as those in the preceding paragraph work well for the
halogens and but not for We cannot account for the observed
fact that is the strongest oxidizing agent among all chemical substances, just
by considering electron affinities.

Acid Base Nature of Element Oxides. Some metal oxides, such as 
react with water to produce the metal hydroxide.

These metal oxides are called basic oxides or base anhydrides. The term
anhydride means without water.  A base without water  becomes a base
when the water is added. Thus, the base anhydride becomes the base
LiOH, and BaO becomes after reaction with water. Moving from top
to bottom down a group, the elements become more metallic, and their oxides
become more basic.

Some nonmetal oxides react with water to produce an acidic solution. These
are acidic oxides or acid anhydrides. reacts with water to produce 
a weak acid.

Now let us examine the acid base properties of the oxides of the third-
period elements. We expect the metal oxides at the left of the period to be basic
and the nonmetal oxides at the right to be acidic, but where and how does the
changeover occur? and MgO yield basic solutions in water. 
and produce acidic solutions. (quartz) does not dissolve in water.
However, it does dissolve slightly in strongly basic solutions to produce sili-
cates (similar to the carbonates formed by in basic solutions). For this rea-
son, we consider to be an acidic oxide.

Aluminum, a good conductor of heat and electricity, is clearly metallic in its
physical properties. however, can act as either an acidic or a basic
oxide. Oxides with this ability are called amphoteric (from the Greek word
amphos, meaning both ). is insoluble in water but exhibits its ampho-
terism by reacting with both acidic and basic solutions.

The amphoterism of signifies the point at which a changeover from
basic to acidic oxides occurs in the third period of elements. Figure 9-18 sum-
marizes the acid base properties of the oxides of the main-group elements.

Al2O3

 Al2O31s2

Acid

+ 2 NaOH1aq2

Base

+ 3 H2O1l2 ¡ 2 Na3Al1OH2441aq2

Sodium aluminate

Al2O31s2

Base

+ 6 HCl1aq2

Acid

¡ 2 AlCl31aq2 + 3 H2O1l2

Al2O3

Al2O3,

SiO2

CO2

SiO2P4O10

Cl2O, SO2,Na2O

SO21g2 +

An acidic oxide

H2O1l2 ¡ H2SO31aq2

Sulfurous acid

H2SO3,SO21g2

Ba1OH22

Li2O

Li2O1s2

A basic oxide

+ H2O1l2 ¡ 2 Li+1aq2 + 2 OH-1aq2

Lithium hydroxide

Li2O,

F2

F2.I2,Cl2, Br2,

9-7 CONCEPT ASSESSMENT

On the blank periodic table in the margin locate the following:

(a) The group 13 element that is expected to form the most basic oxide

(b) The group 15 element that is expected to form the most acidic oxide

(c) The period 5 element that is expected to form the most basic oxide

(d) The period 5 element that is expected to form the most acidic oxide

(e) The period 3 element that exhibits amphoteric behavior

1 2 13

Li

Na

K

Rb

B

Al

Ga

In

15

N

P

As

Sb

16

O

S

Se

Te

17

F

Cl

Br

I

14

C

Si

Ge

Sn

Be

Mg

Ca

Sr

Cs Tl Bi Po AtPbBa

 FIGURE 9-18
Acidic, basic, and
amphoteric oxides of the
s- and p-block elements
The acidic oxides are pink, the
basic oxides are blue, and the
amphoteric oxides are tan.

1

1
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2 13 14 15 16 17

(a) (b)

 FIGURE 9-17
Displacement of 
by
(a) is bubbled through
colorless, dilute (b) The

produced is extracted into
in which it is much

more soluble (purple layer).
CCl4( l ),
I2

I-(aq).
Cl2(g)
Cl2(g)

I*(aq)
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www.masteringchemistry.com

Based on its position in the periodic table, mercury should be a solid with a melting point well
over 300 C. Yet, it is a liquid at room temperature. For a discussion of why mercury is a liquid,
unlike other metallic elements, go to the Focus On feature for Chapter 9, The Periodic Law and
Mercury, on the MasteringChemistry site. 

°

Summary

9-1 Classifying the Elements: The Periodic Law
and the Periodic Table The experimental basis of the
periodic table of the elements is the periodic law: Certain
properties recur periodically when the elements are
arranged by increasing atomic number. The theoretical basis
is that the properties of an element are related to the electron
configuration of its atoms, and elements in the same group
of the periodic table have similar electron configurations.

9-2 Metals and Nonmetals and Their Ions
The three classes of elements of the periodic table are the
nonmetals, metals, and metalloids. Metalloids have some
properties characteristic of metals and some characteris-
tics of nonmetals. The nonmetals are further divided into
the noble gases and the remainder of the main-group non-
metals, while the metals include the main-group metals
and transition elements.

9-3 Sizes of Atoms and Ions Types of atomic radii
include covalent radii, metallic radii, and van der Waals
radii (Fig. 9-3). In general, atomic radii decrease across a
period and increase down a group of the periodic table
(Figs. 9-4 and 9-9), mirroring the variation in effective
nuclear charge, (equation 9.3) across a period and
down a group. The ionic radii of positive ions are smaller
than the neutral atom, whereas negative ions are larger
than the parent atom (Figs. 9-7 and 9-8). Ionic radii exhibit
adherence to the periodic law similar to that of atomic
radii. When atoms or ions have the same number of elec-
trons, they are said to be isoelectronic. When the radii of
isoelectronic species are compared, the more negative the
charge, the larger the radius of the ion or atom.

Zeff,

9-4 Ionization Energy A study of ionization ener-
gies, I, shows that the periodic relationship observed is
governed by the variation of that is, the ionization
energy decreases down a group and increases across a
period (Fig. 9-10, Tables 9.3 and 9.4).

9-5 Electron Affinity Electron affinity, EA, is the
energy change when an electron is added to a gaseous
atom. Electron affinity does not exhibit clear-cut trends
(Fig. 9-11).

9-6 Magnetic Properties The magnetic properties
of an atom or ion stem from the presence or absence of
unpaired electrons. Paramagnetic atoms and ions have
one or more unpaired electrons. In diamagnetic atoms
and ions, all electrons are paired.

9-7 Periodic Properties of the Elements The
metallic, nonmetallic, and metalloid characteristics of
atoms can be related to a set of atomic properties. In gen-
eral, large atomic radii and low ionization energies are
associated with metals; small atomic radii, high ionization
energies, and large negative electron affinities are associ-
ated with nonmetals. Metalloids occur first in the third
row (at Si) where the break between acid base properties
becomes less defined. Metals usually form oxides that
give basic solutions, whereas nonmetal oxides form acidic
solutions. The nonmetal oxide is called an anhydride
since the addition of water gives an acid. At the break
between clearly basic and acidic properties, some metals
and metalloids exhibit amphoteric behavior because they
react with both acids and bases (Fig. 9-18).

Zeff

Integrative Example

When the ionization energies of a series of isoelectronic atoms and ions are compared, an interesting relationship
is observed for some of them. In particular, if the square root of the ionization energy (in ) for the series

and is plotted against the atomic number of the species, a linear relationship is

obtained. The corresponding graph for the series and is also linear. The graph is shown
on page 387.

The equations for the two lines joining the points are

(9.7)

(9.8)

Explain the origin of these relationships and the differences in the numerical coefficients.

Third-row elements: 1I = 13.5Z - 124

Second-row elements: 1I = 18.4Z - 32.0

Cl6+,Na, Mg+, Al2+, Si3+, P4+, S5+,
1Z2F6+Li, Be+, B2+, C3+, N4+, O5+,

kJ mol-1

Analyze

We first notice that the electron configuration of the second-row atoms and ions is that is, a single electron 
beyond the helium core Similarly, for the third-row atoms and ions the electron configuration is that 
is, a single electron beyond the neon core 11s22s22p6

2.13s1
2

1s22s22p63s1,11s2
2.

12s1
21s22s1,
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Variation of with atomic
number for the second-row
elements (black line) and the
third-row elements (red line).

1I*
Equation (8.9), with the substitution produces
equation (9.4); and with the further substitution

we haveRH = 2.178 * 10-18
 J,

Z = Zeff,
En = -2.178 * 10-18

+
Zeff

2

n
2
*  J

in equations (8.9) and (9.4) has the unit which
must be converted to the unit of I in the two
straight-line equations given to us.

kJ mol-1
J atom-1,En

 = -1.3116 * 106
 

Zeff
2

n
2

 J mol-1
*

1 kJ

1000 J

En = -2.178 * 10-18 J

atom
* 6.022 * 1023

 

atom

mol
*
Zeff

2

n
2

The energy required to remove an electron from an orbital
with principal quantum number n in a hydrogen-like
species the ionization energy is the negative of that
shown above, that is,

(9.9)I = -En = 1311.6 *
Zeff

2

n
2

 kJ mol-1

In both series of atoms and ions, the inner-core electrons screen the single valence-shell electron from the nucleus. These
species are all reminiscent of the Bohr atom so that as an approximation we can use the expression for the energy levels for
hydrogen-like atoms or hydrogen-like ions (equation 8.9). Specifically, we should be able to use equation (8.9) to derive
equations for the energy required to remove the electron from the valence shells of a hydrogen-like species, that is, the ion-
ization energy Once we have these equations, we can compare them with the equations for the two straight-line graphs.

Solve

1I2.

Equation (9.9) shows that the ionization energy is a
linear function of and the straight-line graphs
(equations 9.7 and 9.8) show that is a linear func-
tion of Z. We are on the right track. However, we must
now take into account that we are considering one-
electron systems with a nucleus shielded by a closed
shell.

First consider the second-row series 
all members of which have the

electron configuration If we assume that the
closed shell perfectly screens the outer electron 
the value of for this series will be Thus weZ - 2.Zeff

2s1,1s2
1s22s1.

N4+, O5+, and F6+
2,C3+,

1Li, Be+, B2+,

1I

1Zeff2
2

1I2
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388 Chapter 9 The Periodic Table and Some Atomic Properties

Assess

In comparing equations (9.10) and (9.11), we find that the difference in the slope (coefficient for Z) is due to the difference
in the principal quantum number of the orbital from which the ionization occurs. The difference in the intercepts is due both
to the principal quantum number from which the ionization occurs and to the number of electrons screening the valence-
shell electron.

Equation (9.10) for the second-row elements is in remarkable agreement with the empirically observed equation (9.7)
at the beginning of this example, especially considering our use of the modified Bohr model.

Although the general form of equation (9.11) is correct for the third-row series, the agreement between the numerical
constants is not as good. This is to be expected because we have assumed perfect screening by the core electrons, which
completely ignores the different characteristics of the electrons composing the inner core. The intricate, correlated
motions of the electrons in the core leads to a complicated combination of screening and penetration that cannot be
accounted for with our simple model.

PRACTICE EXAMPLE A: Francium is an extremely rare radioactive element formed when actinium 
undergoes alphaparticle emission. Francium occurs in natural uranium minerals, but estimates are that little

more than 15 g of francium exists in the top 1 km of Earth s crust. Few of francium s properties have been measured, but
some can be inferred from its position in the periodic table. Estimate the melting point, density, and atomic (metallic)
radius of francium.

PRACTICE EXAMPLE B: Discuss the likelihood that element 168, should it ever be synthesized in sufficient quantity,
would be a noble liquid  at 298 K and 1 bar. Some data that might be useful appear in the table below. Could element
168 be a noble solid  at 298 K and 1 bar? Use spdf notation to show the electron configuration you would expect for
element 168.

1Z = 892
1Z = 872

Taking the square root of both sides and clearing the frac-
tion gives (9.10)1I = 36.22 * a

Z - 2

2
b = 18.11Z - 36.22

Let us now look at the third-row series. In this case the
configuration of the isoelectronic series is so

that if we assume perfect screening of the electron by
the ten inner-core electrons we have

3s1
1s22s22p63s1

Zeff = Z - 10

Proceeding as before and remembering that ionization
occurs from the level, we obtainn = 3 I = 1311.6 *

1Z - 1022

n2
= 1311.6 *

1Z - 1022

32

and
(9.11)1I = 36.22 * a

Z - 10

3
b = 12.07Z - 120.7

Element Atomic Mass, u mp, K bp, K

Argon 39.948 83.95 87.45
Helium 4.0026 4.25
Krypton 83.80 116.5 120.9
Neon 20.179 24.48 27.3
Radon 222 202 211.4
Xenon 131.29 161.3 166.1

should substitute into equation (9.9), and
also since ionization occurs from the orbital, to
obtain

2sn = 2
Zeff = Z - 2

I = 1311.6 *

1Z - 222

n2
= 1311.6 *

1Z - 222

22
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